Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Наддув двигателей внутреннего сгорания, турбонаддув

Наддув двигателей внутреннего сгорания, турбонаддув

Наддувом — называют принудительную подачу воздуха под давлением выше атмосферного. Если речь идет о наддуве двигателя внутреннего сгорания, то при наддуве сжатый воздух подается компрессором из атмосферы в полость цилиндра.

Схемы наддува

Для обеспечения наддува необходим компрессор, который должен сжимать воздух и нагнетать его в двигатель. Для работы необходимо вращать вал компрессора. Для привода компрессора можно использовать разные схемы.

Приводной нагнетатель — Komoressor

Вращать вал компрессора можно с помощью коленвала, установив дополнительную зубчатую или ременную передачу. Такую схему подачи воздуха называют наддувом с приводным нагнетателем. При вращении вала будет вращаться компрессорное колесо, которое будет нагнетать воздух во впускной коллектор двигателя. Иногда на автомобилях оснащенных подобной системой наддува наносят надпись — компрессор (Kompressor). Это простая, но далеко не самая экономичная схема.

Трубонаддув

Для вращения вала компрессора можно использовать энергию отработавших газов, добавив в систему турбины. Выхлопные газы будут вращать турбинное колесо, установленное ка одном валу с компрессорным колесом. Компрессор, в свою очередь будет сжимать воздух и подавать его в двигатель. Такая схема называется турбонаддувом. По сравнению с приводным нагнетателем турбонаддув обладает большей задержкой, так как связь между двигателем и системой наддува не жесткая.

Как работает турбонаддув?

Смесь воздуха и топлива поступает в цилиндр двигателя, смесь сжимается при движении поршня вверх, затем она воспламеняется, из-за расширения газов, поршень вытесняется вниз. Двигаясь он вращает коленвал. Затем при движении воздуха вверх, через открывшиеся клапаны отработанные газы поступают в выходной коллектор.

Поток газов имеет некоторую остаточную энергию достаточную для вращения рабочего колеса турбины. Частицы газа воздействуют на лопатки турбинного колеса, заставляя его вращаться. Турбинное и компрессорное колесо установлены на одном валу. При вращении турбины вращается и компрессор. В компрессоре лопатки рабочего колес воздействуют на воздух, попадающий из атмосферы. В результате этого воздействия частицы воздуха начинают вращаться вместе с колесом. При высокой скорости вращения частицы воздуха будут отбрасываться к периметру колеса в спиральный отвод и принудительно нагнетаться в во впускной коллектор, а затем и в полость цилиндра.

Комбинированные схемы

Сжатие воздуха может быть не одноступенчатым, а двухступенчатым. Причем рабочее колесо компрессора приводится во вращение турбиной, а для привода второй ступени используется механическая передача, соединенная с коленвалом. Такая схема позволяет сочетать достоинства приводного нагнетателя и турбонаддува, и делает работ у двигателя более приемистой. Однако недостаток приводного нагнетателя в виде плохой экономичности также никуда не пропадает.

На на одних режимах работы мощность турбонаддува может быть недостаточна, на других — избыточна. Чтобы избавиться от этого недостатка, между турбиной и двигателем вводят дополнительную механическую связь. Через механическую или гидравлическую передачу. Это позволяет наиболее эффективно использовать мощность, но конструкция при этом сильно усложняется и удорожается, поэтому широкого применения эта схема не получила.

Двухступенчатым может быть не только компрессор, но и турбина. Вторая ступень может использовать для привода во вращение вентиляторов и других вспомогательных устройств, или быть соединена с коленвалом.

Дизель-турбина

На некоторых режимах работы турбина может развивать мощность достаточную для ее применения в качестве первичного двигателя.

В этом случае двигатель и компрессор связывают механически, а между двигателем и турбиной осуществляется газовая связь. Подобный агрегат называют дизель-турбиной. Такая схема эффективна при очень высоких температурах отработанных газов. Для обеспечения надежности работы турбины рабочую температуру приходится снижать, что негативно сказывается на КПД агрегата.

Охлаждение при наддуве, для чего нужен интеркулер?

В процессе сжатия воздух нагревается, теплый воздух имеет меньшую плотность чем холодный. Плотный холодный воздух позволит повысить эффективность работы двигателя, поэтому для отвода ненужного тепла, используется интеркулер.

Интеркулер — это теплообменник, который устанавливается между компрессором и впускным коллектором, он позволяет охладить сжатый воздух, переде его поступлением в двигатель.

Регулирование турбонаддува

Мощность наддува на некоторых режимах может быть избыточна, то есть воздух может сжиматься слишком сильно. Поэтому работу наддува нужно регулировать.

Для ограничения подачи компрессора можно установить на его входе или выходе сопротивление, в виде шайбы с отверстием расчетного диаметра. При увеличении расхода через отверстие сопротивление будет расти, что в свою очередь будет затруднять поступление воздуха в компрессор и или выход из него, за счет этого будет ограничиваться подача воздуха в двигатель.

Читать еще:  Что такое двигатель в паралель

Подобное сопротивление можно установить и перед турбиной. Но установка сопротивления увеличивает потери, что отрицательно скажется на КПД.

Для того, чтобы сбрасывать часть воздуха только при определенном давлении на выходе компрессора можно установить предохранительный клапан. Запорный элемент клапан поджат пружиной, когда усилия от давления воздуха будет достаточно, чтобы сжать пружину клапан откроется и сбросить часть воздуха обратно в атмосферу.

Перепускной клапан

Вестгейт или перепускной клапан позволяет пустить часть отработанных газов в обход турбины. Запорный элемент клапана поджат пружиной.

Давление отработанных газов воздействует на запорный элемент клапана, с другой стороны на него действует усилие пружины. Когда усилие от давления газов будет выше чем усилие пружины, клапан откроется и пропустить часть газов в обход пружины. Это достаточно простая и эффективная схема регулирования, которая применяется на большинстве современных двигателей с турбонаддувом. Однако часть энергии тратится впустую, что снижает КПД. Конечно можно направить поток газа не в выхлопную систему, а на другую турбину, для привода вспомогательных механизмов, но это усложнит конструкцию и сделает ее более дорогой.

Механические нагнетатели. Какие бывают

Центробежные нагнетатели воздуха

Подобные нагнетатели в тюнинге получили наибольшее распространение. По конструкции они наиболее близки к турбонаддуву, поскольку имеют одинаковый принцип нагнетания воздуха. Разняться лишь способы привода. Работа осуществляется следующим образом.

Принцип работы центробежного нагнетателя в следующем: воздух, пройдя по воздушному каналу в нагнетатель, попадает на лопасти крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии кожуха, где имеется диффузор. Далее воздух выталкивается в воздушный туннель (воздухосборник), который имеет улиткообразную форму.

Такая конструкция создает необходимое давление воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух поначалу движется быстро, и его давление мало. Но в конце улитки русло расширяется, скорость воздушного потока понижается, а давление увеличивается. Так создается необходимый подпор для накачки цилиндров двигателя.

Недостатки

Для эффективной работы крыльчатка должна вращаться очень быстро. Производимое компрессором давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 тысяч об/мин и более. И поскольку привод осуществляется от коленвала посредством ременной передачи на шкив турбины, шум от такого устройства сильный . Хотя многим этот характерный свист нравится.

К минусам относят некоторую задержку в срабатывании. Хотя она не столь заметна, как у турбонагнетателей.

Как правило, центробежный нагнетатель дает прибавку на высоких оборотах двигателя. Сначала давление нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает. Эта важно для поддержания высоких скоростей, а не интенсивности разгона.

Объемные нагнетатели ROOTS

Компрессоры типа «Рутс» относятся к классу объемных нагнетателей. Конструкция их довольно проста и напоминает масляный шестеренчатый насос двигателя. В корпусе овальной формы вращаются в противоположные стороны два ротора, имеющие специальный профиль. Роторы насажены на оси, связанные одинаковыми шестернями.

Минусы

Поскольку процесс сжатия воздуха осуществляется вовне компрессора, его эффективная работа возможна лишь до определенных значений наддува. С ростом давления увеличивается просачивание воздуха назад, и КПД снижается. Мощность, затрачиваемая на вращение самого нагнетателя, может превысить добавочную мощность двигателя.

Еще один недостаток. В них создается турбулентность, способствующая росту температуры воздушного заряда. Наряду с обычным ростом температуры от непосредственно повышения давления, в рутс-компрессорах происходит дополнительный нагрев. Поэтому нагнетатели ROOTS в обязательном порядке оснащаются интеркулерами.

Шум от работы объемных компрессоров не столь сильный, как у центробежных, и имеет иную тональность. При этом, в отличие от центробежных, механические нагнетатели ROOTS эффективны на малых и средних оборотах двигателя. Эта особенность рутс-компрессоров сделала их наиболее пригодными для драг рейсинга, где ценится динамика разгона. Другой плюс – относительная простота конструкции.

Плюсы и минусы нагнетателей

Использование нагнетателей воздуха для авто может негативно сказаться на ресурсе двигателя. Как правило, поломку мотора вызывают повышенные обороты. Стало быть, использование нагнетателя, повышающего крутящий момент на низких и средних оборотах, может, наоборот, благоприятно сказаться на ресурсе.

Читать еще:  Ford escape какой двигатель лучше

С другой стороны, если добиваться большого роста мощности, многие штатные детали придется заменить на более прочные. Например, кованые поршни и шатуны будут совсем нелишними. Cжатие воздуха всегда сопряжено с повышением температуры. В некоторых компрессорах это повышение не существенно. Но для снижения потери мощности на привод нагнетателя воздух необходимо охлаждать.

Еще одна проблема – детонация. Высокая температура и давление подаваемого в цилиндры воздуха может привести, что в конце такта сжатия, когда поршень спрессует в цилиндре уже сжатую топливо-воздушную смесь, её температура и давление могут оказаться большими. Что вызовет преждевременную детонацию, т. е. взрыв.

В погоне за мощностью: Нагнетатели

Как мы писали в предыдущем номере, увеличить мощность двигателя можно единственным способом — сжигая больше горючей смеси. Этого можно добиться разными способами, но наиболее распространенные — увеличение рабочего объема двигателя или увеличение подачи горючей смеси в цилиндры посредством наддува. Первая схема хорошо известна по американским многолитровым машинам. Очевидный плюс — простота конструкции такого двигателя и, следовательно, более высокий ресурс. Минус — большая масса, что ведет за собой увеличение габаритов и веса автомобиля и, как следствие, ухудшение управляемости.

Наддув обязательно ведет к усложнению конструкции двигателя, что не может не сказываться на надежности, но позволяет достичь большей мощности при меньших размерах и габаритах. Если на Porsche поставить 12-цилиндровый двигатель, мы получим классический американский автомобиль, пускай и с прекрасной разгонной динамикой. Удивительно маневренными немецкие машины делают компактные 6-цилиндровые двигатели, в которых они умудряются снимать с 3,5 л объема мощность в 456 л.с.

Наддувательство

Самым элементарным является инерционный наддув. Принцип его действия действительно прост: на капоте, если двигатель находится впереди, или по бокам или на крыше, если мотор сзади, ставятся дополнительные воздухозаборники, от которых по воздуховоду подводится дополнительный воздух к впускному коллектору. Заметим сразу, что воздухозаборники «ушастого» «Запорожца» никакого отношения к наддуву не имели — они служили для охлаждения двигателя. Точно так же заблуждались владельцы «тюнинговых» «Жигулей», которым умельцы устанавливали такие воздухозаборники на капоте. Дело в том, что инерционный наддув начинает работать только на скорости выше 180 км/ч, которую продукт отечественного автопрома развить не мог ни при каких обстоятельствах. А увидеть действующую систему в Москве можно на нескольких Pontiac Firebird Trans Am, на которые инерционный наддув ставился на заводе.

Реальную же прибавку в мощности можно получить, только установив компрессор. Если он приводится механической передачей от коленвала, то такое устройство чаще всего называют механическим нагнетателем в России, compressor — в Германии, supercharger — в Америке и blower — в Англии. Если же компрессор вращается турбиной, размещенной в выпускном тракте двигателя, то его чаще всего называют турбонагнетателем (turbocharger).

С немецким акцентом

Впервые наддув применил в своих автомобилях легендарный француз Луис Рено. По иронии судьбы сегодня Renault — одна из немногих компаний, не применяющая наддув в своих двигателях для легковых автомобилей. Мировую же известность механическим нагнетателям принесла компания Mercedes-Benz, устанавливающая наддувочные компрессоры в конце 20-х сначала на гоночные, а начиная с 30-х — и на серийные машины. После того, как компрессорные «Мерседесы» полюбили Адольф Гитлер и немецкие кинодивы, мода на наддувные машины перекинулась на Голливуд и оттуда — на весь мир. Золотой век немецких «компрессоров» закончился одновременно с началом Второй мировой войны. Основное применение компрессоров в военное время пришлось на авиацию: наддув использовался для компенсации недостатка кислорода на больших высотах. Особенно в этом преуспели американцы. Поэтому неслучайно в послевоенное время центр производства механических нагнетателей переместился за океан. Даже вновь появившиеся на «Мерседесах» после полувекового перерыва механические нагнетатели для немецкого гиганта поставляет американская компания Eaton, что, впрочем, не очень афишируется.

Автогипертония

Механический компрессор, турбонагнетатель – слова, ставшие заклинаниями для всех фанатов скорости, готовых пойти на любые жертвы ради лишней дюжины лошадей. Но действующим в жестких рамках автопроизводителям приходится быть куда осмотрительнее и тщательно взвешивать плюсы и минусы каждого варианта наддува.

Текст: Карелов Олег.

Читать еще:  Abl двигатель технические характеристики

Задача любого компрессора – увеличение количества воздуха, подаваемого в цилиндры. А, как известно, чем больше воздуха вберет в себя мотор, тем больше он может сжечь топлива, и тем выше будет его крутящий момент. Однако от современного двигателя требуется не только высокая отдача, но и легкость управления. А на это влияют такие параметры, как четкость откликов на нажатие педали газа, равномерность тяги в широком диапазоне оборотов. И здесь результат уже существенно зависит от вида нагнетателя.

МЕХАНИЧЕСКИЙ КОМПРЕССОР

Столь быстрому успеху механических компрессоров способствовала их относительная простота и долговечность. При этом наиболее удачным из них оказался нагнетатель, изобретенный братьями Рутс: воздух в нем сжимается двумя роторами, вращающимися в противоположные стороны со скоростью до 20000об/мин.

Достоинства и недостатки механических нагнетателей обусловлены их жесткой связью с валом мотора. К преимуществам относится эффективный наддув, начиная уже с холостых оборотов двигателя, а так же постоянное поддержание высокого давления во впускном коллекторе, благодаря которому автомобиль следует за педалью газа без каких-либо задержек.

Главный же недостаток – это отбор мощности у мотора, и, соответственно, увеличение расхода топлива. Причем на мощных компрессорных двигателях эти потери составляют далеко не один десяток лошадиных сил. Но разве можно считать недостатком потребность устройства в энергии для работы? Оказывается можно, ведь есть турбокомпрессоры!

ТУРБОКОМПРЕССОР

Разумеется, турбонагнетатель – не “вечный двигатель”, но, в отличие от механического компрессора, для сжатия воздуха он использует “бесплатную” энергию выхлопных газов. Действительно, когда в двигателе в конце такта расширения открывается выпускной клапан, то нагретые до 1000 градусов отработавшие газы вырываются из цилиндра под давлением около пяти бар. Поэтому вполне логично поставить на их пути турбину, которая могла бы совершать какую-то полезную работу. Например, нагнетать воздух в цилиндры, как предложил еще 1905 году инженер Альфред Бюи.

Выдвинутый им принцип турбокомпрессора остался неизменным и до сих пор: к турбине через общий вал пристыковывается центробежный воздушный насос, нагнетающий воздух в цилиндры. Соответственно, чем сильнее отработавшие газы раскручивают ротор турбины, тем большее давление обеспечивает компрессор.

Однако в производстве такие агрегаты отнюдь не просты, ведь подшипники вала должны выдерживать крайне высокие температуры и огромные, до двухсот тысяч оборотов в минуту(!), скорости вращения. Из-за этого приходится, например, включать турбокомпрессор в единую систему смазки двигателя.

Другой проблемой турбонаддува является его инерционность, то есть задержки между нажатием водителя на газ и началом интенсивного разгона — драгоценное время уходит на раскручивание турбины. А при низких оборотах двигателя турбокомпрессор и вовсе оказывается беспомощным – потока выхлопных газов просто не хватает для интенсивной раскрутки ротора.

ПЕРСПЕКТИВЫ

Одно время механические и турбинные нагнетатели являлись полноценной альтернативой друг другу. Но сейчас, когда счет идет на каждый грамм CO2, их пути расходятся. Турбокомпрессоры перестали быть исключительно средством установления рекордов мощности: теперь они помогают создавать экономичные компактные, но при этом динамичные моторы, такие как, например, агрегаты Audi TFSI. А с врожденными недостатками борются с помощью изменяемой геометрии лопастей, или просто установкой вместо одного большого турбокомпрессора двух маленьких, обладающих существенно меньшей инерционностью.

Что же до механических нагнетателей, то они сдают позиции – уж слишком велики потери мощности. Однако, подключаясь по мере необходимости, они вполне могут дополнять турбонаддув, устраняя задержки и помогая ему на низких оборотах, что и продемонстрировал Volkswagen своим необычным мотором TSI. И если этот двигатель пройдет испытание временем, то, может быть, в будущем давние конкуренты – турбонаддув и механический компрессор — вновь встретятся лицом к лицу, но на сей раз уже в качестве партнеров.

На самом деле, турбина создает не такое уж и большое сопротивление на выпуске — всего около 3% мощности теряется в таких двигателях на раскрутку крыльчатки. И тому есть объяснение — скорость потока до и после турбины остается практически неизменной — а вот температура разная — выхлопные газы отдают свою энергию в виде тепла.

Ссылка на основную публикацию
Adblock
detector