Конденсаторы для запуска электродвигателя
Конденсаторы для запуска электродвигателя
Из статьи читатели узнают о том, как подобрать конденсаторы к электродвигателю, чтобы получился привод с оптимальными характеристиками.
Питание обычного синхронного и асинхронного двигателя осуществляется от сети переменного напряжения. Существуют также и «необычные» движки, например, питающиеся от бортовой сети транспортных средств или от специальных генераторов. Принцип их работы такой же, но частота питающего напряжения, как правило, заметно больше 50 Гц.
В электродвигателе переменного тока статор обеспечивает пространственное перемещение магнитного поля. Без этого ротор не сможет начать вращение самостоятельно.
Роль конденсаторов в электроприводе
Если напряжение питания однофазное, с помощью конденсатора можно получить в статоре перемещение магнитного поля. Для этого в нем нужна дополнительная обмотка. Она подключается через конденсатор. Величина его емкости прямо пропорционально влияет на пусковой крутящий момент. Если измерять его величину (ось ординат) соответственно увеличению емкости (ось абсцисс), получится кривая. С определенного значения величины емкости приращение момента станет все меньше и меньше.
Величина емкости, начиная с которой приращение крутящего момента заметно уменьшается, будет оптимальной для пуска данного мотора. Но для разогнанного движка и его продолжительной работы пусковой конденсатор всегда слишком велик своей емкостью. Для поддержания стабильной работы электродвигателя применяется рабочий конденсатор. Его емкость меньше, чем у пускового. Правильно подобрать рабочий конденсатор также можно экспериментально.
Как определить оптимальную величину емкости
Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.
При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.
Расчет рабочей емкости
Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.
- Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.
Подбор пусковой емкости
Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.
После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.
Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.
Металлобумажные и пленочные конденсаторы
Величина 220 В напряжения сети переменного тока, используемая для технических характеристик двигателей, соответствует действующему значению. Но при нем амплитудное значение напряжения составит 310 В. Именно до этого уровня будет заряжаться конденсатор электродвигателя. Поэтому номинальное напряжение пускового и рабочего конденсатора выбирается с запасом и составляет не менее 350 вольт. Наиболее надежными разновидностями их являются металлобумажные и металлопленочные конденсаторы.
Но их размеры велики, а емкости одного конденсатора недостаточно для большинства промышленных движков. Например, для движка мощностью 1 кВт только рабочая емкость получается равной 109,1 мкФ. Следовательно, пусковая емкость получится более чем в 2 раза больше. Чтобы выбрать конденсатор нужной емкости, например, для движка 3 кВт при наличии уже выбранного экземпляра для мощности 1 киловатт, его можно взять за основу. В этом случае один конденсатор заменяется тремя, подключенными параллельно.
Для работы движка нет разницы, какие конденсаторы — один или три — задействованы при включении. Но выбирать лучше три. Этот вариант отличается экономичностью, несмотря на большее число соединений. Перенапряжение повредит только один из трех. И его замена обойдется дешевле. Один большой конденсатор при замене будет отличаться существенно более высокой ценой.
Далее показаны изображения и размеры конденсаторов металлобумажной и металлопленочной структуры и размеры их для того, чтобы можно было оценить габариты конденсаторной батареи на их основе.
Если нужен оптимальный по размеру экземпляр, его подбирают в таблице по приведенным данным.
Электролитические конденсаторы
Рассматриваемые металлопленочные конденсаторы стабильны, надежны и долговечны при соблюдении правильных условий эксплуатации, среди которых важнейшим параметром является напряжение. Но в электросети в результате коммутации потребителей, а также по другим причинам возможны перенапряжения. Если происходит пробой изоляции обкладок, они становятся непригодными для дальнейшей работы. Но подобное происходит не часто и основной проблемой применения этих моделей являются габариты.
Более компактной альтернативой могут быть электролитические конденсаторы (т.н. электролиты). Они имеют существенные отличия своими меньшими размерами и структурой. Поэтому могут заменить несколько единиц металлобумажных на 1 электролит. Но свойства их структуры ограничивают продолжительность срока службы. Хотя есть и положительная сторона — самовосстановление после пробоя. Продолжительная работа электролитов на переменном токе невозможна. Он нагреется и, в конце концов, разрушится, по крайней мере, предохранительный клапан. А то и корпус.
Чтобы предотвратить подобные происшествия, необходимо подсоединить диоды. Подключение пускового конденсатора с диодами делается, как показано далее на изображении. Но это не значит, что можно применить любую из моделей электролитов с напряжением 350 В или больше. Уровень пульсаций и частота их строго регламентированы. Если происходит превышение этих параметров, начинается нагрев. Конденсатор может выйти из строя. Для запуска и работы двигателей изготавливаются специальные электролиты с диодами внутри. Необходимо применять для движков только такие модели.
Причем из-за пульсаций напряжения не все электролиты могут выполнять функцию рабочей емкости. Их чаще используют при пуске с последующим отключением.
Для рабочих емкостей делаются специальные электролитические модели, устойчивые к пульсациям. Металлобумажные и пленочные пусковые конденсаторы для электродвигателей в этом отношении намного выносливее. Поэтому если необходима надежность, лучше применить их. Но это будет в ущерб габаритам электропривода.
Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы
Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).
Фазосдвигающий конденсатор.
При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.
Емкость фазосдвигающего конденсатора нужно рассчитать так:
- для соединения «треугольником»: Сф=4800•I/U;
- для соединения «звездой»: Сф=2800•I/U.
Об этих типах соединения можно подробнее ознакомиться тут:
В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.
Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).
В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.
Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.
Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.
В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.
Рабочий конденсатор.
Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.
Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.
Пусковой конденсатор.
Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.
Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.
Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.
Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.
Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.
Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.
При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.
Двигатель АПН 212, 220380, 2,471,43А, КПД-0.7, cos-0.7, 400W.
Ср = 4800 * 2,47 А 220 В = 54 МF. (полная формула)
Ср = 400Вт * 7 = 28 МF (сокращенная формула)
Почему разница Ср больше чем в 2 раза?
Расчет тока по формуле I = P (400) 1.73 * U (220) * cos (0.7) * КПД (0.7) = 2.15 А, а на шильдике 2.47А. Опять отличие. В чем дело?
Поставил конденсатор рабочий 30 MF запускается плохо – рукой, работает нормально – точило. Круг на 150 мм.
Распространенная ошибка: путают местами формулы для расчета фазосдвигающей емкости. Ошибка в коэффициентах, не учли, что для схемы включения «звезда» он ниже, чем для «треугольника». А дальше все точно рассчитывается.
Вы же знаете, что фазосдвигающий конденсатор нужен только при включении в сеть 220 В. В трехфазной сети 380 В уже есть сдвигающее воздействие от реактивной (индуктивной) составляющей энергии, заданное еще генератором на такой далекой электростанции.
Поэтому расчеты рабочего фазосдвигающего конденсатора понадобиться проводить только для напряжения 220 В. Когда не действует индуктивная реактивная составляющая от генератора на электростанции, тогда приходится прибегать к местной емкостной реактивной составляющей.
Это напряжение можно подать на электродвижок соединенный как «звездой», так и «треугольником». Вы поняли, что если оставить электродвигатель со схемой «звезда», то через две последовательно соединенный обмотки пойдет меньший из указанных на шильдике токов — 1.43 А. Ну а в случае с изменением схемы расключения начала обмоток электродвигателя на «треугольник», то при подаче отдельно на каждую обмотку по 220 В, через них пойдет наверняка больший ток — 2.47 А.
Значит, Ваш двигатель при соединении «звездой» имеет такие параметры:
220 В,
1.43 А,
расчет рабочего фазосдвигающего конденсатора следующий:
Сф = 4800*I/U = 4800*1.43/220 = 31.2 мкФ;
Для соединения «треугольником» параметры будут такими:
220 В,
2.47 А,
расчет рабочего фазосдвигающего конденсатора такой:
Сф = 2800*I/U = 2800*2.47/220 = 31.4 мкФ.
Ну, приблизительно то же самое значение фазосдвигающей ёмкости получается при приблизительном расчете на каждые 100 ватт по 7 мкФ:
400*7 = 28 мкФ.
Формула для расчета номинального тока наиболее точна для больших электродвигателей циркулярок, тельферов, насосов, у которых мощность превышает 3 кВт.
Плохо пускается точильное от рассчитанного конденсатора уже понятно почему: потому что конденсатор рабочий. Конечно, если заморочиться, то не помешает, таки, поставить пусковой конденсатор. А можно и рукой дернуть! Да и пустить в нужную сторону.
Каталог статей
Стоимость неполярных конденсаторов значительно выше, чем электролитических. Размеры неполярных и полярных конденсаторов тоже значительно отличаются. Электролитические конденсаторы при тех же размерах обладают большей ёмкостью.
Значит, имеет смысл приспособить электролитический конденсатор для пуска асинхронного двигателя.
За счет чего электролитический конденсатор имеет преимущество в емкости, перед не полярными конденсаторами, например, масляными.
Емкость конденсатора зависит, от площади активной поверхности и диэлектрика между ними, а размер его будет зависеть от оксидного слоя, который является диэлектриком. Оксидный слой очень тонкий достигает несколько атомных слоёв. Что позволяет уместить больше активной поверхности конденсатора на ед. площади. Электролит выполняет функцию частичного восстановления оксидного слоя при правильном подключении конденсатора с соблюдением полярности.
Вот и напрашивается ответ, почему нельзя включать полярный конденсатор в сеть переменного тока. Произойдет разрушение оксидного слоя диэлектрика из-за того, что в сети меняется полярность (+-) напряжения с частотой 50 Гц. Разрушится оксидный слой, уменьшится сопротивление, ток увеличится, конденсатор разогревается с выделением газа, произойдет короткое замыкание, сопровождением небольшого взрыва.
Теперь предстоит задача, как подключить электролитический конденсатор в сеть переменного тока, чтобы он не взорвался.
Конденсаторы выбираем по напряжению, не менее 300 – 350В. Конденсаторы подключаем парами, то есть одинаковой емкостью С1 и С2 должны быть например, 300мкФ. Как известно из курса физики, что при последовательном соединении конденсаторов, ёмкость двух конденсаторов будут меньше — меньшей ёмкости конденсатора. Например: (С1*С2)/(С1+ С2) = С(общ.)мкФ (300*300)/(300+300) = 150мкФ
В целях безопасной эксплуатации конденсаторной батареи на предмет взрыва, пусть не сильного, но все токи, её следует поместить в коробочку.
Выпрямительные диоды 1Д – 2Д выбираем по току и напряжению, например, диод Д112-10Х-10 рассчитан на ток 10А Uобр.max,В = 600В Темп.,С = +190С цена = 1 шт. 240.00 руб.
Вот необходимая информация есть, как сделать конденсаторный блок из электролитических конденсаторов.
Пишите в комментариях, как приспособили конденсаторы на практике.
Расчет конденсаторов для работы трехфазного асинхронного двигателя в однофазном режиме
Для включения трехфазного электродвигателя в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник .
Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.
Пусковая емкость конденсаторов
С п = С р + С о ,
где С р — рабочая емкость,
С о — отключаемая емкость.
После пуска двигателя конденсатор 2 отключают.
Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:
для схемы на рис. а: С р = 2800 I ном / U ;
для схемы на рис. б: С р = 4800 I ном / U ;
для схемы на рис. в: С р = 1600 I ном / U ;
для схемы на рис. г: С р = 2740 I ном / U ,
где С р — рабочая емкость при номинальной нагрузке, мкФ;
I ном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.
Пример расчета рабочей емкости конденсатора для двигателя
Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.
С р = 2800 x 2.4 / 220 ≈ 30 мкФ.
Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается. При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость С п = (2,5 ÷ 3) С р . т.е емкость пускового конденсатора Сп выбирают в 2 — 3 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.
Онлайн помощник домашнего мастера
Конденсатор для электродвигателя: советы по подбору и правила подключения пускового конденсатора
- Электродвигатели
Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка – помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.
Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.
Краткое содержимое статьи:
А, что такое конденсатор?
Его устройство отличается простотой и надежностью – внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.
Рассмотрим их по отдельности:
Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации – возгоранию либо появлению короткого замыкания.
Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки – она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.
Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.
Теперь ознакомьтесь с фото конденсаторов для электродвигателя – это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной – стоит воспользоваться его знаниями, если не хватает своих.
Если необходим конденсатор для работы с трехфазным электродвигателем
Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.
Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.
Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.
Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 – 3 раза, чем у сетевой версии конденсатора.
Если необходим конденсатор для работы с однофазным электродвигателем
Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.
Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.
В чем сложность выбора такого конденсатора?
В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:
- Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора – 70 мкФ для 1 кВт от мощности электродвигателя;
- Используется рабочий вариант конденсатора с емкостью в 25 – 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
- Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.
Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.
В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.
Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.
Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.
Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 – 600 В, происходящего в процессе пуска либо завершения работы двигателя.
Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:
- Его часто применяют для бытовых приборов;
- Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы – конденсатор;
- Подключается на основе множества схем с помощью конденсатора;
- Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.
Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.