Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы двигателя внутреннего сгорания (ДВС)

Принцип работы двигателя внутреннего сгорания (ДВС)

Принцип действия двигателя внутреннего сгорания (ДВС) показан на рисунке, где для наглядности совмещена индикаторная диаграмма четырехтактного двигателя и его принципиальная схема.

Поршень, перемещаемый в цилиндре диаметром D, шарнирно соединен с шатуном, который в свою очередь шарнирно соединен с кривошипом коленчатого вала. В головке цилиндра установлены впускной к1, и выпускной к2 клапаны, которые связывают полость внутри цилиндра с окружающей средой. Поршень совершает возвратно-поступательное движение (ход поршня S), а коленчатый вал — вращательное. Так как двигатель четырехтактный, одному обороту коленчатого вала соответствуют два хода поршня.

Рис. Индикаторная диаграмма работы четырехтактного ДВС и его принципиальная схема

При движении поршня от клапанов внутрь цилиндра через впускной клапан к1 засасывается горючая смесь (кривая О—1′). Прямая a—а’ соответствует давлению окружающей среды. При впуске не происходит изменение параметров состояния смеси (р, v и Т), меняются лишь масса (G) и объем (V) смеси. При обратном движении поршня горючая смесь сжимается по адиабате (кривая 1’—2). Происходит изменение состояния смеси, параметры p, v и Т при постоянном количестве смеси, заключенной в цилиндре, при сжатии изменяются. Клапаны при этом закрыты.

По окончании сжатия смесь зажигается и очень быстро сгорает. Прямая 2—3 соответствует изменению состояния рабочего тела, причем происходит изменение как термодинамических параметров, так и химического состава рабочего тела. До вспышки (точка 2) рабочее тело представляло собой горючую смесь, в конце горения (точка 3) это уже продукт горения.

На этом этапе происходит очень резкое увеличение давления (р) и температуры (Т). Теплотой, выделившейся в результате сгорания смеси, нагреваются продукты сгорания, их давление и температура увеличиваются.

Когда поршень делает третий ход, происходит процесс расширения газов (кривая 3—4), осуществляется адиабатный процесс изменения состояния продуктов сгорания.

При четвертом ходе поршня, который совпадает по направлению со вторым, из цилиндра удаляются продукты сгорания через выпускной клапан к2. Причем начало этого процесса совпадает с концом процесса расширения (прямая 4—1). Избыточное давление в цилиндре падает. При этом не происходит изменения состояния рабочего тела, так как падает давление с р4 до р1 не в результате охлаждения рабочего тела посредством теплообмена в холодильнике, а путем выпуска рабочего тела, т.е. без теплообмена.

Далее, при движении поршня в сторону клапанов происходит принудительное удаление остатков продуктов сгорания из цилиндра (кривая 1—0)у меняется масса (G) и объем (V) рабочего тела. Далее цикл повторяется.

Таким образом, цикл двигателя внутреннего сгорания формируется четырьмя возвратно-поступательными ходами поршня, называемыми тактами двигателя. Поэтому данный двигатель называется четырехтактным.

Если у двигателя отсутствуют такты впуска и выпуска, то он называется двухтактным, и его вал делает один оборот за цикл. Цикл двухтактного двигателя состоит из тех же процессов, что и для четырехтактного, а название тактов определяется основными процессами, которые протекают в цилиндре (такт расширения и такт сжатия). При этом процессы впуска свежего заряда и выпуска продуктов сгорания осуществляются соответственно в начале такта сжатия и в конце такта расширения, протекая почти одновременно. Площадь фигуры 1234 на индикаторной диаграмме соответствует работе за один цикл.

На рисунке показана индикаторная диаграмма четырехтактного двигателя внутреннего сгорания. Диаграмма термодинамического цикла отлична от индикаторной диаграммы, так как она показывает изменение состояния рабочего тела, а индикаторная — изменение давления в цилиндре в зависимости от положения поршня.

ДВС, как это видно из рисунка, не работают по замкнутому круговому процессу, но их циклы условно считают круговыми обратимыми циклами и при их исследовании используют те же термодинамические методы изучения, для чего действительные процессы, протекающие в ДВС, заменяются обратимыми термодинамически ми процессами. Составленный из термодинамических обратимых процессов цикл исследуется на термический КПД, работу и параметры состояния.

Исследование теоретических циклов позволяет определить максимальный с точки зрения термодинамики КПД в данных условиях и факторы, которые влияют на экономичность двигателя.

По принципу работы, т. е. по характеру подвода теплоты к рабочему телу циклы ДВС можно разбить на три группы:

  1. циклы с подводом теплоты к газу при постоянном объеме;
  2. циклы с подводом теплоты к газу при постоянном давлении;
  3. смешанные циклы — с подводом теплоты к газу частично при постоянном объеме, частично при постоянном давлении.
Читать еще:  Что такое график всх двигателя

Термодинамические циклы исследуются одним методом, который включает в себя следующие этапы:

  1. по условию и характеру работы двигатели строится индикаторная диаграмма цикла;
  2. определяются параметры рабочего тела в характерных точках на основании формул, выражающих соотношения между параметрами состояния для процессов данного цикла;
  3. определяются теплота и работа цикла;
  4. определяется термический КПД цикла по формуле:

График работы двигателя внутреннего сгорания

«Компания «Ай Пи Ар Медиа» является владельцем Хранилища цифровых научных данных и диапазона индексов DOI для регистрации размещаемых в Хранилище объектов и обеспечивает регистрацию DOI по запросу правообладателя на безвозмездной основе.

Регистрация DOI позволяет обеспечить возможность обращаться к объектам, размещенным в Хранилищах, по их постоянному имени. Цифровой объект включается в мировые научные коммуникации и становится видимым для всего мирового сообщества, повышая потенциал цитирования и использования объекта.

Для присвоения Вашим объектам DOI, обратитесь к нам [email protected]

Рекомендуем

Издательство: Троицкий мост

Автор: Макрусев В.В.

Год издания: 2022

ISBN: 978-5-4377-0138-6

Издательство: Ай Пи Ар Медиа

Автор: Калинин Ю.И., Устинов Ю.Ф., Жулай В.А., Муравьев В.А.

Год издания: 2021

ISBN: 978-5-4497-1061-1

Издательство: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа

Автор: Куликов А.И., Овчинникова Т.Э.

Год издания: 2021

ISBN: 978-5-4497-0859-5

Издательство: Профобразование

Автор: Куликов А.И., Овчинникова Т.Э.

Год издания: 2021

ISBN: 978-5-4488-0989-7

Издательство: Троицкий мост

Автор: Клейменова А.Н.

Год издания: 2021

ISBN: 978-5-6044302-0-0

Издательство: Профобразование

Автор: Шутка А.В., Гурьева Е.И.

Год издания: 2021

ISBN: 978-5-4488-1107-4

С этой книгой также читают

Издательство: Вузовское образование

Автор: Горбунова Т.Н., Журавлева Т.Ю.

Год издания: 2014

ISBN:

Издательство: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ

Автор: Радоуцкий В.Ю., Егоров Д.Е.

Год издания: 2013

ISBN:

Издательство: Балтийский федеральный университет им. Иммануила Канта

Автор: Шалагинова И.Г., Клейменов В.Н.

График работы двигателя внутреннего сгорания

Каждый режим работы двигателя характеризуется совокупностью многих параметров, отражающих те или иные его свойства. К числу таких параметров можно отнести: N е — эффективную мощность; M — крутящий момент; ? — угловую скорость коленчатого вала; р к —давление наддува; g e — эффективный удельный расход топ­лива; Т — температуру охлаждающей воды; ? — коэффициент избытка воздуха; ? e — эффективный КПД; h — положение рейки топливного насоса (органа управления); ?— положение рычага управления автоматическим регулятором и др.

Режим работы двигателя называется установившимся, если числовые значения всех названных (и многих других) параметров двигателя сохраняются постоянными во времени. При этом необ­ходимо учитывать, что двигатель является машиной цикличе­ского действия, в связи с чем даже у многоцилиндровых двигателей с большой частотой вращения коленчатого вала не удается обес­печить точного поддержания значения того или иного параметра на выбранном установившемся режиме. Например, колебания угловой скорости на установившихся режимах работы двигателя определяются степенью нестабильности [10], т. е. параметром, характеризующим размах амплитуды колебаний относительной мгновенной угловой скорости. Для различных двигателей сте­пень нестабильности имеет значение от 1 до 4%. В этом случае при заданном установившемся режиме выбирают среднее значе­ние угловой скорости за определенный интервал времени (напри­мер, за один или несколько оборотов коленчатого вала).

Двигатель работает на установившемся режиме при выпол­нении таких условий статического равновесия, как равенство вы­работанного двигателем и израсходованного потребителем коли­чества энергии, выделенной и отведенной теплоты, подведенного и отведенного воздуха или газа, и т. п. Эти условия могут быть выражены уравнениями статического равновесия:

и других элементов двигателя.

В приведенных уравнениях: M — крутящий момент двигателя; M с — момент сопротивления (момент потребителя); Q n — коли­чество теплоты, поступившей от двигателя в систему охлаждения в единицу времени; Q p — количество теплоты, отданной системой охлаждения через радиатор в ту же единицу времени; G K — количество воздуха, поданного ком­прессором во впускной коллек­тор в единицу времени; G д — количество воздуха, поступив­шего в цилиндры двигателя в ту же единицу времени; G г — количество отработавших газов, поступающих в единицу време­ни из цилиндров двигателя в выпускной коллектор; G т —ко­личество отработавших газов, поступивших на лопатки турбины из выпускного коллектора в ту же единицу времени; М т — крутя­щий момент турбины и М к — момент сопротивления компрессора.

Уравнения статического равновесия (1) —(5) и другие обусло­вливают также и часто используемое название установившихся режимов — равновесные режимы, при которых обеспечивается равновесие в общем случае прихода и расхода энергии или массы.

Диапазон изменений каждого параметра обусловливается наз­начением двигателя и ограничивается его прочностными, тепло­выми и газодинамическими возможностями. Например, угловая скорость коленчатого вала двигателя внутреннего сгорания мо­жет изменяться в ограниченных пределах. Ряд факторов не поз­воляет превышать заданной максимальной угловой скорости вала ? ma х , так как это влечет за собой превышение допустимых значе­ний сил инерции в деталях двигателя с точки зрения их прочности, приводит к ухудшению качества протекания рабочих процессов в цилиндре двигателя, увеличивает термическое перенапряжение деталей двигателей и т. п.

В некоторых случаях двигателю приходится работать при са­мой малой частоте вращения вала (например, при стоянке тепло­воза перед семафором). При этом скоростной режим должен быть таким, чтобы двигатель работал устойчиво. Если снизить угловую скорость вала ниже допустимого минимального предела ? min , то появятся перебои в работе, в результате чего двигатель может самопроизвольно остановиться.

Следовательно, скоростные режимы двигателя ограничены как верхним ? m ах /? ном , так и нижним ? min /? ном пределами (рис. 21).

На каждом скоростном режиме мощность двигателя может изме­няться от нулевой (холостой ход) до максимальной, которую спо­собен развить данный двигатель при заданном скоростном режиме. Максимальная мощность обусловливается максимальной нагрузкой при которой еще не нарушаются нормальные условия протекания процессов в цилиндре двигателя.

Из сказанного следует, что возможные установившиеся режимы работы двигателя охватывают некоторую область, которую можно изобразить графически в виде заштрихованной площади (рис. 21), ограниченной по оси ординат максимально возможной мощностью N e /N e ном при выбранном скоростном режиме, а по оси абсцисс — минимальным ? min /? ном и максимальным ? m ах /? ном скорост­ными режимами. Точка А с координатами (1; 1) соответ­ствует номинальному режиму работы. Обычно технические усло­вия предусматривают возможность кратковременной перегрузки двигателя на 10—15%. На рис. 21 этот режим отмечен точкой В. Точка С соответствует режиму работы холостого хода при номиналь­ной угловой скорости, точки D и E соответствуют минимально возможному скоростному режиму.

Между параметрами, характеризующими работу двигателя на каждом установившемся режиме, существуют определенные функ­циональные зависимости, определяемые теорией рабочих процес­сов двигателя.

Так, эффективный КПД двигателя

связан со средним индикаторным давлением механическим КПД ? м , давлением наддувочного воздуха р к и его температурой Т к , коэффициентом наполнения ? m ; М 1 — действительное количество воздуха в цилиндре двигателя после дозарядки при давлении р к и температуре Т к ; Н и — теплота сгорания топлива.

Среднее эффективное давление

где ? — коэффициент избытка воздуха; р к — плотность воздуха; ? i и ? m — соответственно индикаторный и механический КПД; ? ? — коэффициент наполнения.

В обобщенной форме этой зависимости можно придать вид

Каждый установившийся режим двигателя всегда определя­ется постоянством во времени всех параметров, входящих (и не входящих) в зависимость (6). Эту зависимость можно представить в виде некоторой многомерной поверхности, каждая точка кото­рой определяется совокупностью конкретных числовых значений всех параметров, входящих в функциональную зависимость (6) и соответствующих определенному установившемуся режиму.

Однако во многих случаях нет необходимости учитывать все возможные параметры, характеризующие работу двигателя на установившемся режиме. В этих случаях выбирают один, два, три или несколько параметров, представляющих наибольший интерес; например, к числу таких параметров можно отнести М — крутя­щий момент двигателя; ? — угловую скорость коленчатого вала; h — положение рейки топливного насоса или g ц — цикловую подачу топлива. Если за положительное направление перемеще­ния рейки принять ее перемещение в сторону уменьшения цикло­вой подачи топлива, то эти три параметра в совокупности дадут некоторую поверхность А (рис. 22). Каждая точка поверхности А соответствует одному установившемуся (равновесному) режиму.

Иногда для характеристики установившегося режима работы двигателя из всего многообразия параметров (6) выбирают по­стоянство какого-то одного параметра и по его значениям харак­теризуют тот или иной установившийся режим работы двигателя. Например, постоянное числовое значение крутящего момента двигателя свидетельствует об соответствующем установившемся нагрузочном режиме (М = const при h = var; ? = var), постоян­ное значение угловой скорости вала ? — об определенном уста­новившемся скоростном режиме (? — const при М = var; h = var), называемом стационарным. Постоянное значение темпе­ратуры охлаждающей воды Т свидетельствует об соответствующем тепловом режиме двигателя и т. д. В некоторых случаях на всех возможных установившихся режимах между отдельными параме­трами выдерживается определенная связь. Так, между моментом сопротивления М с гребного винта и его угловой скоростью имеется зависимость М с = Ф с ? 2 , поэтому на параболе ЕА (см. рис. 21) укладываются все статические установившиеся режимы судового двигателя, а сама парабола ЕА соответствует судовым условиям работы двигателей.

В транспортных условиях двигатель может иметь любые ре­жимы: как скоростные, так и нагрузочные. Заштрихованная пло­щадь на рис. 21 характеризует, таким образом, область возмож­ных режимов работы двигателя в транспортных условиях.

Если в процессе эксплуатации двигатель работает на ряде установившихся скоростных и нагрузочных режимов, то часто говорят, что такой двигатель работает на переменных режимах. Например, можно сказать, что транспортный двигатель может ра­ботать на переменных скоростных и нагрузочных режимах, в то время как стационарный дизель-генератор должен иметь один установившийся скоростной режим при переменных нагрузочных режимах.

График работы двигателя внутреннего сгорания

Ссылка для цитирования этой статьи:

Дискин М.Е. Высокотемпературное охлаждение двигателей внутреннего сгорания на режимах частичных нагрузок // Вестник Евразийской науки, 2018 №2, https://esj.today/PDF/79SAVN218.pdf (доступ свободный). Загл. с экрана. Яз. рус., англ.

Высокотемпературное охлаждение двигателей внутреннего сгорания на режимах частичных нагрузок

Дискин Марк Евгеньевич
Кандидат технических наук
E-mail: [email protected]

Аннотация. В системе охлаждения двигателей внутреннего сгорания большое значение имеет температура охлаждающей жидкости. Она влияет на количество теплоты, передаваемой от стенки к охлаждающей жидкости. Чем выше температура охлаждающей жидкости, тем меньше теплоты передается стенке и больше теплоты передается рабочему телу. Следовательно, высокотемпературное охлаждение двигателей внутреннего сгорания является эффективным средством улучшения параметров их работы.

По данным литературных источников рассмотрены плюсы и минусы перевода двигателей внутреннего сгорания на высокотемпературное охлаждение. Накопленный опыт эксплуатации дизелей с системами высокотемпературного охлаждения показывает, что их применение способствует повышению эффективного КПД ηе и снижению нагрузок наиболее теплонапряженных деталей за счет уменьшения колебаний их температур.

Но применение высокотемпературного охлаждения двигателей внутреннего сгорания на режиме номинальной мощности ограничено температурным уровнем деталей, обеспечивающих их работоспособность.

Предварительные расчеты на основе опубликованных экспериментальных данных показывают, что применение ВТО, обеспечивающей поддержание на всех режимах работы ДВС температуры наиболее нагретых деталей, ограждающих камеру сгорания на уровне температуры на режиме номинальной мощности, приводит к повышению эффективного КПД на режимах частичных нагрузок и значительному повышению требуемого давления в системе охлаждения.

Предложено, что система ВТО должна обеспечивать поддержание на всех режимах работы ДВС температуры наиболее нагретых деталей, ограждающих камеру сгорания на оптимальном уровне, обеспечивающем повышение эффективного КПД при допустимом уровне повышения давления в системе охлаждения, за счет ограничения допустимой температуры охлаждающей жидкости на режимах малых нагрузок.

Ключевые слова: двигатель внутреннего сгорания; высокотемпературное охлаждение; режим номинальной мощности; режим частичной нагрузки; эффективный КПД; давление в системе охлаждения


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2588-0101 (Online)
Уважаемые читатели! Комментарии к статьям принимаются на русском и английском языках.
Комментарии проходят премодерацию, и появляются на сайте после проверки редактором.
Комментарии, не имеющие отношения к тематике статьи, не публикуются.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]