Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПУЭ 7

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 5. Электросиловые установки

Глава 5.3. Электродвигатели и их коммутационные аппараты

​Защита электродвигателей напряжением до 1 кВ (асинхронных, синхронных и постоянного тока)

5.3.55. Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий (см. 5.3.56), в сетях с глухозаземленной нейтралью — также от однофазных замыканий, а в случаях, предусмотренных в 5.3.57 и 5.3.58, — кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима согласно 5.3.59. ¶

Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения. ¶

5.3.56. Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели. ¶

Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя (см. 1.7.79 и 3.1.8) и вместе с тем чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самозапуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6. ¶

Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной в 3.1.8. ¶

Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы. ¶

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя. ¶

Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители-отсечки. ¶

5.3.57. Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самозапуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами. ¶

Защита от перегрузки должна действовать на отключение, на сигнал или на разгрузку механизма, если разгрузка возможна. ¶

Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы. ¶

5.3.58. Защита минимального напряжения должна устанавливаться в следующих случаях: ¶

для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть; ¶

  • для электродвигателей механизмов, самозапуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности;
  • для части прочих электродвигателей в соответствии с условиями, приведенными в 5.3.52.

Для ответственных электродвигателей, для которых необходим самозапуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания. ¶

5.3.59. Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора. ¶

5.3.60. Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться: ¶

1) в электроустановках с заземленной нейтралью — во всех фазах или полюсах; ¶

2) в электроустановках с изолированной нейтралью: ¶

  • при защите предохранителями — во всех фазах или полюсах;
  • при защите автоматическими выключателями — не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.

Защита электродвигателей переменного тока от перегрузок должна выполняться: ¶

  • в двух фазах при защите электродвигателей от КЗ предохранителями;
  • в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе. ¶

5.3.61. Аппараты защиты электродвигателей должны удовлетворять требованиям гл. 3.1. Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения допускается осуществлять соответствующими расцепителями, встроенными в один аппарат. ¶

Читать еще:  Bmw 320 схема двигателя

5.3.62. Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями. ¶

УСТРОЙСТВА ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Токозависимые защитные устройства имеют разный принцип действия и несут в себе различные функции, направленные на защиту электродвигателя .

Предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или короткого замыкания. Включаются предохранители последовательно защищаемой сети. Предохранители способны защитить асинхронные электродвигатели, (далее по тексту АД), только от токов короткого замыкания в 10-100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии, они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае, они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле, используют предохранители с плавкой вставкой типа аМ с более пологой токо-временной характеристикой. Они способны выдерживать, не расплавляясь, токи в 5-10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства. Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время, при однофазном коротком замыкании, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.

Автоматические выключатели (автоматы)
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания. Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле. Обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем. Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные, для защиты от токов короткого замыкания;
  2. тепловые для защиты от перегрузок;
  3. комбинированные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.

Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D.

Тип B — величина тока срабатывания магнитного расцепителя равна Iв= KIн, при K=3–6 (K=I/Iн – кратность тока к номинальному значению). Бытовое применение, где ток нагрузки невысокий и ток к. з. может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C — величина тока срабатывания магнитного расцепителя Iс= KIн, при K=5–10. Бытовое и промышленное применение: для двигателей с временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D — величина тока срабатывания магнитного расцепителя более 10Iн. Применение для мощных двигателей с затяжным временем пуска.

Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4,5 кА. Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств. Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0,7Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0,35Uн, где Uн – номинальное напряжение в сети. Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.

Тепловые реле (расцепители)
Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз. Конструктивно представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата). Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токовременной характеристикой.

Читать еще:  Что такое шпуля для двигателя

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Недостатком тепловых реле является то, что трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от перегрева двигателя в режиме холостого хода или недогруза. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегруза, связанного с быстропеременной нагрузкой на валу электродвигателя. Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Таблица выбора теплового реле типа РТЛ (для пускателей типа ПМЛ)

АППАРАТУРА ЗАЩИТЫ И УПРАВЛЕНИЯ

ОБЩИЕ СВЕДЕНИЯ

К аппаратуре защиты и управления электродвигателя относится обширная группа разообразных устройств, при помощи которых производится пуск, останов, реверсирование и регулирование скорости вращения двигателей, а также защита их от перегрузок и коротких замыканий, автоматическое регулирование технологических параметров и блокировка отдельных механизмов. Пpaвилыiый выбор этой аппаратуры приобретает большое значение для рациональной эксплуатации того или иного электропривода.

При ручном управлении приводом используют рубильники, выключатели и переключатели; при автоматическом – контакторы, магнитные пускатели, кнопки и кнопочные станции, путевые и конечные выключатели и переключатели. программные реле, электронно-ионную аппаратуру.

Для зашиты электродвигателей, сетей и аппаратуры от коротких замыканий, длительных перегрузок, ненормального понижения или повышения напряжения применяют плавкие предохранители, автоматические выключатели, тепловые реле, реле максимального тока и минимального напряжения.

При выборе аппаратуры принимают во внимание род тока, напряжение и мощность двигателя, а также категории помещения по состоянию окружающей среды и степени пожарной опасности производства.

АППАРАТУРА ЗАШИТЫ

Плавкие предохранители представляют собой наиболее простые и дешевые аппараты для защиты электродвигателей и электроустановок от токов короткого замыкания и при значительных перегрузочных токах. Действие предохранителя основано на том, что в цепь последовательно включается проволока или пластинка из легкоплавкого сплава, расплавляющаяся как только сила тока в защищаемой цепи превысит допустимый предел, после чего цепь автоматически отключается.

Плавкая проволока или пластинка предохранителя носит название плавкой вставки и изготовляется из сплава свинца и олова или меди.

При перегрузках, составляющих 300% и более номинального тока, плавкие предохранители срабатывают достаточно быстро; но при перегрузке порядка 150% номинального тока предохранитель или совсем не отключит двигатель, или отключит его через значительное время (примерно через 1 ч). Поэтому считают, что плавкие предохранители не обеспечивают защиты при небольших длительных перегрузках и могут быть использованы только для защиты при больших внезапных перегрузках или коротких замыканиях.

Однако предохранители не должны отключать двигатель при кратковременных перегрузках, например в момент его пуска, когда ток (в двигателе с короткозамкнутым ротором) превышает номинальный в 5—7 раз.

Выбор предохранителя по току вставки производят по каталогу. В зависимости от напряжения, величины тока и условий работы пpименяют слeдyющиe предохранители: пробочные, пластинчатые трубчатые открытые, трубчатые закрытые без заполнения, закрытые с заполнением и др.

Для зашиты осветительной сети и двигателей малой ‘мощности служат пробочные предохранители, рассчитанные на токи до 60 а при напряжении до 500 в. При токах от 60 до 350 а и напряжении до 500 в применяют пластинчатые предохранители, монтируемые на плите и закрываемые крышкой.

Трубчатые предохранители безопасны в обслуживании, так как плавкая вставка перегорает внутри трубки и дуга гасится вследствие образования в ней повышенного давления газа. В сетях с напряжением выше 500 в применяют трубчатые предохранители с кварцевым заполнением.

Основным недостатком плавких предохранителей является то, что фактический ток плавления вставки изменяется в зависимости от состояния ее поверхности, условий охлаждения и других факторов. Более надежная защита обеспечивается применением различных реле.

Реле максимального тока мгновенного действия служат для защиты электродвигателей от токов короткого замыкания и перегрузки

Основными частями реле являются катушка, включаемая последовательно в цепь главного тока, подвижной якорь и контакты. Когда ток, протекающий через катушку достигнет предельно допустимого значения, якорь притянется к катушке и разомкнет контакты, разорвав тем самым цепь управления, и двигатель остановится. Если после срабатывания якорь вернется в первоначальное положение и контакты снова замкнутся, то такое реле называют реле с самовозвратом.

Читать еще:  Peugeot 3008 какой двигатель выбрать

Нашей промышленностью выпускаются разнообразные типы реле максимального тока. Так, реле серии РЭВ-2110 мгновенного действия служат для защиты двигателей от токов короткого замыкания, реле РЭВ-2111 имеют самовозврат, а реле РЭВ-2112 ручной возврат. Выпускаются эти реле на номинальные токи от 2,5 до 600 а.

Реле минимального и нулевого напряжения служат для защиты двигателей при чрезмерном понижении или исчезновении напряження сети. Они устроены подобно максимальным реле, но их катушки включены в сеть параллельно. При нормальном напряжении сети якорь притянут и контакты замкнуты. Если напряжение понижается или исчезает, якорь отпускается, контакты размыкаются, цепь управления разрывается и двигатель останавливается. Для реле переменного тока типа РЭ-2161 напряжение втягивания составляет 60—80% а напряжение отпускания 25—30% номинального.

Рис.64. Устройство теплового реле

Тепловое реле используют для защиты двигателей при длительной перегрузке (рис. 64).

осноовным элементом теплового реле является биметаллическая пластинка 1, состоящая из двух биметалическихичёских слоев, жестко связанных между собой и имеющих различные коэффициенты теплового линейного расширения. В первую цепь включен нагревательный элемент 2. Ток, проходит по этому элементу, нагревает его. При увеличении тока . свыше номинального элемент настолько сильно нагреет биметаллическую пластинку, что она изогнется вниз и выведет . ку 3 из зацепления с рычагом 4. Под действием пружины 5 . повернется и разомкнет контакты 6, включенные в цепь управления двигателем, вследствие чего он остановится. Поэтому включить двигатель можно только после остывания пластины нажав на кнопку 7. Для установки тока выключения. винт 8, которым можно регулировать степень отклонения биметаллической пластины.

Тепловые реле типа РТ изготовляют однофазными и двухфазными и применяют обычно совместно с магнитными пускателем. Нагреватели реле рассчитаны на токи от 0,33 до 205 а. . Т имеют следующие недостатки: плохую тепловую связь . теля и биметаллического элемента и отсутствие темпе-ой компенсации, вследствие чего ток срабатывания реле . от температуры окружающей среды. Эти недостатки . тельной мере устранены в новых конструкциях тепловых . пов ТРП и ТРН, освоенных нашей промышленностью.

Дата добавления: 2016-06-22 ; просмотров: 2914 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Что такое аппаратура защиты двигателя

Новости:
  • Главная
  • Информация

Пускорегулирующая аппаратура представляет собой обширный ассортимент аппаратов, предназначенных для управления электрооборудованием (пуск и остановка), а также регулировки режима электросетей и электроустановок. Данная аппаратура относится к группе низковольтного оборудования и применяется в сетях с напряжением до 1000 В. Установленная пускорегулирующая аппаратура позволяет уменьшить затраты на эксплуатацию оборудования и значительно повысить надежность, безопасность и срок службы любого оборудования.

Разнообразие пускорегулирующей аппаратуры

В настоящее время десятки отечественных и зарубежных производителей предлагают огромный ассортимент аппаратуры различного назначения. В данный ассортимент входит следующая пускорегулирующая аппаратура:

  • Устройства защиты двигателя
  • Реле контроля и управления
  • Контакторы
  • Тепловые и силовые реле
  • Частотные преобразователи
  • Устройства плавного пуска
  • Бесконтактные датчики и т.д.

Устройства плавного пуска

Устройства плавного пуска предназначены для обеспечения безотказной работы и защиты электродвигателей различного оборудования. Данная пускорегулирующая аппаратура гарантируют эксплуатацию двигателя на заданном уровне силы тока и напряжения сети, например 30 -1050 А при напряжении сети 400-690 В. Применение таких устройств позволяет снизить влияние больших пусковых токов при резком пуске двигателя, тем самым увеличив срок службы двигателя.

Отдельную группу пускорегулирующих устройств представляют автоматы двигателей, предназначенные для защиты электромоторов от коротких замыканий и перегрузок, а также позволяют регулировать работу теплового расцепителя.

Контакторы и реле

Реле перегрузки и контакторы составляют самую обширную группу аппаратуры данного типа и широко используются в промышленности, строительстве, системах вентиляции и отопления, системах освещения, в грузоподъемном оборудовании и т.д. Пускорегулирующая аппаратура данного типа предназначена для коммутации и управления токами, а также для коммутации конденсаторных батарей и в других целях. Сегодня выпускаются реле различного типа (электронные, термические, силовые и т.д.), что позволяет создать максимально гибкую систему, адаптированную к требованиям клиента.

Преобразователи частоты

Частотные преобразователи предназначены для регулирования скорости электродвигателей вентиляторов, насосных агрегатов, компрессоров и другого оборудования. Данная пускорегулирующая аппаратура позволяет решить различные задачи по автоматизации производства и сэкономить электроэнергии, а также продлить срок эксплуатации электромотора. Принцип действия частотных преобразователей заключается в преобразовании одно- или трехфазного напряжения постоянной частоты 50 Гц в трехфазное напряжение с переменной частотой от 0,2 до 400 Гц.

Реле контроля и управления

Создание современных систем автоматизации невозможно без использования электронных приборов и реле различного назначения: реле безопасности, электронные таймеры, реле контроля, интерфейсные реле и т.д. Данная пускорегулирующая аппаратура может отвечать за различные операции и использоваться в цепях аварийной остановки, двуручных органах управления, для контроля состояния дверей, для внешнего контроля программируемых логических контроллеров и т.д.

Сенсоры

Сенсоры составляют отдельную группу устройств, состоящую из различных датчиков положения (емкостные, индуктивные, ультразвуковые), концевых выключателей, датчиков напряжения и т.д. Данная пускорегулирующая аппаратура входит в состав различных автоматизированных систем (обычно охранных) и готовых операторских панелей.

Ссылка на основную публикацию
Adblock
detector