Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дифференциальная защита

Дифференциальная защита

Назначение: защита электрических объектов от токов аварий, возникающих внутри контролируемой зоны с абсолютной степенью селективности без выдержки времени.

Принцип работы дифференциальной зашиты

Измерительным комплексом работает дифференциальный орган, состоящий из трансформаторов тока и реле, постоянно отслеживающих направление токов на различных участках и срабатывающих при их изменениях.

В номинальном, рабочем режиме ток нагрузки протекает от генераторонго конца к потребителям и по всей линии имеет одно направление. Его отслеживают и учитывают измерительные реле. Если на контролируемом участке возникает короткое замыкание, то токи начинают его подпитывать со всех сторон. На конце линии потребителя ток меняет направление на противоположное.

Это учитывается дифференциальным органом: он срабатывает и запускает логическую схему защит на отключение. Диф защиты работают по двум различным принципам:

Она используется для линий электропередач. Измерительные трансформаторы тока и реле устанавливаются по концам линии на разных подстанциях. Токовые цепи соединяются протяженными кабельными линиями.

У продольной диф защиты измерительное токовое реле подключают так, чтобы вектора токов, приходящие от измерительных трансформаторов, подавались на обмотку встречно. В этом случае при номинальном рабочем режиме или возникновении внешнего КЗ вне контролируемой зоны вектора токов будут взаимно компенсироваться и уничтожаться на обмотке. Поводов для срабатывания не будет.

При возникновении КЗ внутри линии через обмотку токового реле начинают протекать токи. Оно срабатывает.

Более перспективные высокочастотные дифференциальные защиты (ДФЗ, БЧБ и др.) используют этот же принцип, но связь между концами линий для сравнения направлений токов на них осуществляется по каналам связи за счет передачи высокочастотных импульсов.

Ее создают для объектов, расположенных на одной подстанции, например, силовых трансформаторов, блоков двигателей, генераторов и др.

Измерительные трансформаторы тока работают на одной подстанции, но на разных присоединениях защищаемого объекта. Обмотка токового реле также подключается встречно к направлению векторов токов линий. В остальном поперечная дифференциальная защита повторяет принцип работы продольной.

Подробнее различные виды дифференциальных защит рассмотрены тут:

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Контакторы

Запчасти: контакты, катушки, соединения, пружины, камеры, мехблокировки

Щетки и щеткодержатели

Устройства РЗА

Запчасти к станкам, тепловозам, кранам

Клеммные зажимы и соединители

Приборы электроизмерительные

Электроприводы

Выключатели и переключатели

МЭО, контроллеры, приборная продукция

Модульные реле и устройства автоматики

Продукция Klemsan

Терминалы ТОР 200-Д (ДЗТ) предназначены для использования в качестве защиты и автоматики выключателей двигателей мощностью свыше 5 МВт . Реализованы дифференциальная защита с торможением и дифференциальная отсечка. Кроме основных выполнены резервные специфические защиты для двигателей, обеспечивающие надёжную защиту от перегрузок, вызванных изменениями технологических режимов, пусковыми токами и др.

Производится расчёт температуры обмоток двигателя по замеру тока статора с учётом предварительного режима нагрузки. Учитываются условия охлаждения двигателя, что позволяет более точно вычислить допустимую загрузку двигателя в режимах циклических кратковременных перегрузок двигателя, а также при повторных пусках. При достижении опасного уровня нагрева двигателя производится отключение и запрет включения. Разрешение на повторное включение даётся после охлаждения при достижения безопасного уровня нагрева обмоток с учётом последующего пуска. Учитывается ограничение количества пусков двигателя в соответствии с разрешёнными по паспорту данными. Защита от межвитковых замыканий в обмотке статора обеспечивается измерительным органом, реагирующим на ток обратной последовательности.

  • дифференциальная токовая защита с торможением;
  • дифференциальная токовая отсечка;
  • защита от перегрузки («псевдотепловая» модель);
  • защита асинхронного хода;
  • защита пусковых режимов;
  • одноступенчатая ненаправленная токовая защита от междуфазных замыканий;
  • одноступенчатая ненаправленная токовая защита от замыканий на землю;
  • одноступенчатая направленная токовая защита от замыканий на землю;
  • одноступенчатая защита от замыканий на землю (на высших гармониках);
  • защита от несимметричных режимов работы по току обратной последовательности (I2) и по току несимметрии (Id);
  • защита от снижения нагрузки;
  • УРОВ с отдельным токовым органом;
  • организация цепей блокировки ЛЗШ.

  • отключение от внешних цепей (АЧР, ЗМН и др.);
  • автоматическое включение резервного двигателя.

  • дистанционное управление от АСУ ТП;
  • местное управление от ключей на двери релейного шкафа;
  • местное управление с кнопок на лицевой панели,
  • блокировка от многократных включений выключателя;
  • расчет коммутационного и механического ресурса;
  • контроль цепей управления (РПО, РПВ, автомата питания цепей управления выключателем);
  • контроль давления элегаза;
  • запрет включения при отключенном автомате ШП и неисправности цепей включения.

  • учёт предварительной нагрузки двигателя;
  • селективная защита от замыканий на землю;
  • запрет включения двигателя при перегреве;
  • режим тестирования.

  • количество аналоговых каналов – 7 токов;
  • количество дискретных входов – 18;
  • количество выходных реле – 17;
  • 2 порта связи – по заказу.

терминалов микропроцессорных « ТОР 200-Д (ДЗТ) »

Защита и автоматика двигателей мощностью свыше 5 МВт

Наименование предприятия __________________________________________________________________

Продольная дифференциальная защита электродвигателя

Применяется на ЭД с мощностью более 4000 кВт; однако защита может устанавливаться на двигателях меньшей мощности, если чувствительность отсечки не соответствует [5]. Принцип действия продольной дифференциальной защиты ЭД и ее схема подобны продольной дифференциальной защите трансформатора, (

Ток срабатывания защиты определяется [25] по выражению:

(7.5) где ― ток небаланса в относительных единицах, по сути коэффициент небаланса, = 0,1…0,5; kП ― коэффициент пуска, IН,ДВ ― номинальный ток двигателя.

Время срабатывания защиты принимается равным нулю:

.

Коэффициент чувствительности оценивается по выражению

где IК1,МIN – минимальный ток КЗ в точке К1

Защиты электродвигателей от минимального напряжения.

В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.
Наиболее просто защита минимального напряжения может быть выполнена с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.
Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте [Л. 42], показана на рис. 11-7. Реле минимального напряжения прямого действия 1РНВ — 4РНВ включены на междуфазные напряжения АВ и ВС. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автомат 3А с мгновенным электромагнитным расцепителем (использованы две фазы автомата).
Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель, что исключает возможность однофазных коротких замыканий в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автомат 1А с электромагнитным мгновенным расцепителем, а в фазе С автомат 2А с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.
При повреждениях в цепях напряжения рассматриваемая защита будет работать следующим образом.. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматов, так как цепи напряжения не имеют глухого заземления.

При двухфазном коротком замыкании ВС отключится только автомат 2А фазы С. Реле напряжения 1РНВ и 2РНВ остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. Реле ЗРНВ и 4РНВ, запустившиеся при коротком замыкании в цепях напряжения, после отключения автомата 2А вновь подтянутся, так как на них будет подано напряжение через конденсатор от фазы А.

При коротком замыкании АВ или АС отключается автомат 1А, установленный в фазе А. После отключения короткого замыкания реле 1РНВ и 2РНВ вновь подтянутся, так как на них будет подано напряжение от фазы С через конденсатор. Реле ЗРНВ и 4РНВ не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С.

Таким образом, рассмотренная схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных видах повреждения цепей напряжения — трехфазном коротком замыкании или при отключении обоих автоматов 1А и 2А.
Сигнализация неисправности цепей напряжения осуществляется контактами реле 1РН, 2РН, ЗРН и контактами автоматов 1А, 2А, ЗА,

28. Предназначение и принципы построения систем автоматического повторного включения в электрических сетях. Классификация систем автоматического повторного включения. Требования предъявляемые к системам автоматического повторного включения.

Все повреждения в электрической сети можно условно разделить на два типа: устойчивые и неустойчивые.

· К устойчивым повреждениям относятся такие, для устранения которых требуется вмешательство оперативного персонала или аварийной бригады. Такие повреждения не самоустраняются со временем, эксплуатация поврежденного участка сети невозможна. К таким повреждениям относятся обрывы проводов, повреждения участков линий, опор ЛЭП, повреждения электрических аппаратов.

· Неустойчивые повреждения характеризуются тем, что они самоустраняются в течение короткого промежутка времени после возникновения. Такие повреждения могут возникать, например, при случайном схлёстывании проводов. Возникающая при этом электрическая дуга не успевает нанести серьёзных повреждений, так как через небольшой промежуток времени после возникновения короткого замыкания цепь обесточивается действием релейной защиты. Включение отключенного участка сети под напряжение называется повторным включением. В зависимости от того, остался ли этот участок сети в работе или же снова отключился, повторные включения разделяют на успешные и неуспешные. Соответственно, успешное повторное включение указывает на неустойчивый характер повреждения, а неуспешный на то, что повреждение было устойчивым.

Для того чтобы ускорить и автоматизировать процесс повторного включения, применяют устройства автоматического повторного включения (АПВ).

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 5. Электросиловые установки

Глава 5.3. Электродвигатели и их коммутационные аппараты

​Защита асинхронных и синхронных электродвигателей напряжением выше 1 кВ

5.3.43. На электродвигателях должна предусматриваться защита от многофазных замыканий (см. 5.3.46) и в случаях, оговоренных ниже, защита от однофазных замыканий на землю (см. 5.3.48) защита от токов перегрузки (см. 5.3.49) и защита минимального напряжения (см. 5.3.52 и 5.3.53). На синхронных электродвигателях должна, кроме того, предусматриваться защита от асинхронного режима (см. 5.3.50 и 5.3.51), которая может быть совмещена с защитой от токов перегрузки. ¶

Защита электродвигателей с изменяемой частотой вращения должна выполняться для каждой частоты вращения в виде отдельного комплекта, действующего на свой выключатель. ¶

5.3.44. На электродвигателях, имеющих принудительную смазку подшипников, следует устанавливать защиту, действующую на сигнал и отключение электродвигателя при повышении температуры или прекращения действия смазки. ¶

На электродвигателях, имеющих принудительную вентиляцию, следует устанавливать защиту, действующую на сигнал и отключение электродвигателя при повышении температуры или прекращении действия вентиляции. ¶

5.3.45. Электродвигатели с водяным охлаждением обмоток и активной стали статора, а также с встроенными воздухоохладителями, охлаждаемыми водой, должны иметь защиту, действующую на сигнал при уменьшении потока воды ниже заданного значения и на отключение электродвигателя при его прекращении. Кроме того, должна быть предусмотрена сигнализация, действующая при появлении воды в корпусе электродвигателя. ¶

5.3.46. Для защиты электродвигателей от многофазных замыканий в случаях, когда не применяются предохранители, должна предусматриваться: ¶

1. Токовая однорелейная отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия, включенным на разность токов двух фаз, — для электродвигателей мощностью менее 2 МВт. ¶

2. Токовая двухрелейная отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия — для электродвигателей мощностью 2 МВт и более, имеющих действующую на отключение защиту от однофазных замыканий на землю (см. 5.3.48), а также для электродвигателей мощностью менее 2 МВт, когда защита по п. 1 не удовлетворяет требованиям чувствительности или когда двухрелейная отсечка оказывается целесообразной по исполнению комплектной защиты или применяемого привода с реле прямого действия. ¶

При отсутствии защиты от однофазных замыканий на землю токовая отсечка электродвигателей мощностью 2 МВт и более должна выполняться трехрелейной с тремя трансформаторами тока. Допускается защита в двухфазном исполнении с дополнением защиты от двойных замыканий на землю, выполненная с помощью трансформатора тока нулевой последовательности и токового реле. ¶

3. Продольная дифференциальная токовая защита — для электродвигателей мощностью 5 МВт и более, а также менее 5 МВт, если установка токовых отсечек по п. 1 и 2 не обеспечивает выполнения требований чувствительности; продольная дифференциальная защита электродвигателей при наличии на них защиты от замыканий на землю должна иметь двухфазное исполнение, а при отсутствии этой защиты — трехфазное, с тремя трансформаторами тока. Допускается защита в двухфазном исполнении с дополнением защиты от двойных замыканий на землю, выполненной с помощью трансформатора тока нулевой последовательности и токового реле. ¶

Для электродвигателей мощностью 5 МВт и более, выполненных без шести выводов обмотки статора, должна предусматриваться токовая отсечка. ¶

5.3.47. Для блоков трансформатор (автотрансформатор) — электродвигатель должна предусматриваться общая защита от многофазных замыканий: ¶

1. Токовая отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах (см. также 5.3.46), — для электродвигателей мощностью до 2 МВт. При схеме соединения обмоток трансформатора звезда — треугольник отсечка выполняется из трех токовых реле: двух включенных на фазные токи и одного включенного на сумму этих токов. ¶

При невозможности установки трех реле (например, при ограниченном числе реле прямого действия) допускается схема с двумя реле, включенными на соединенные треугольником вторичные обмотки трех трансформаторов тока. ¶

2. Дифференциальная отсечка в двухрелейном исполнении, отстроенная от бросков тока намагничивания трансформатора, — для электродвигателей мощностью более 2 МВт, а также 2 МВт и менее, если защита по п. 1 не удовлетворяет требованиям чувствительности при междуфазном КЗ на выводах электродвигателя. ¶

3. Продольная дифференциальная токовая защита в двухрелейном исполнении с промежуточными насыщающимися трансформаторами тока — для электродвигателей мощностью более 5 МВт, а также 5 МВт и менее, если установка отсечек по п. 1 и 2 не удовлетворяет требованиям чувствительности. ¶

Оценка чувствительности должна производиться в соответствии с 3.2.19 и 3.2.20 при КЗ на выводах электродвигателя. ¶

Защита должна действовать на отключение выключателя блока, а у синхронных электродвигателей — также на устройство АГП, если оно предусмотрено. ¶

Для блоков с электродвигателями мощностью более 20 МВт, как правило, должна предусматриваться защита от замыкания на землю, охватывающая не менее 85% витков обмотки статора электродвигателя и действующая на сигнал с выдержкой времени. ¶

Указания по выполнению остальных видов защиты трансформаторов (автотрансформаторов) (см. 3.2.51 и 3.2.53) и электродвигателей при работе их раздельно действительны и в том случае, когда они объединены в блок трансформатор (автотрансформатор) — электродвигатель. ¶

5.3.48. Защита электродвигателей мощностью до 2 МВт от однофазных замыканий на землю при отсутствии компенсации должна предусматриваться при токах замыкания на землю 10 А и более, а при наличии компенсации — если остаточный ток в нормальных условиях превышает это значение. Такая защита для электродвигателей мощностью более 2 МВт должна предусматриваться при токах 5 А и более. ¶

Ток срабатывания защит электродвигателей от замыканий на землю должен быть не более: для электродвигателей мощностью до 2 МВт 10 А и для электродвигателей мощностью более 2 МВт 5 А. Рекомендуются меньшие токи срабатывания, если это не усложняет выполнения защиты. ¶

Защиту следует выполнять без выдержки времени (за исключением электродвигателей, для которых требуется замедление защиты по условию отстройки от переходных процессов) с использованием трансформаторов тока нулевой последовательности, установленных, как правило, в РУ. В тех случаях, когда установка трансформаторов тока нулевой последовательности в РУ невозможна или может вызвать увеличение выдержки времени защиты, допускается устанавливать их у выводов электродвигателя в фундаментной яме. ¶

Если защита по условию отстройки от переходных процессов должна иметь выдержку времени, то для обеспечения быстродействующего отключения двойных замыканий на землю в различных точках должно устанавливаться дополнительное токовое реле с первичным током срабатывания около 50-100 А. ¶

Защита должна действовать на отключение электродвигателя, а у синхронных электродвигателей — также на устройство АГП, если оно предусмотрено. ¶

5.3.49. Защита от перегрузки должна предусматриваться на электродвигателях, подверженных перегрузке по технологическим причинам, и на электродвигателях с особо тяжелыми условиями пуска и самозапуска (длительность прямого пуска непосредственно от сети 20 с и более), перегрузка которых возможна при чрезмерном увеличении длительности пускового периода вследствие понижения напряжения в сети. ¶

Защиту от перегрузки следует предусматривать в одной фазе с зависимой или независимой от тока выдержкой времени, отстроенной от длительности пуска электродвигателя в нормальных условиях и самозапуска после действия АВР и АПВ. Выдержка времени защиты от перегрузки синхронных электродвигателей во избежание излишних срабатываний при длительной форсировке возбуждения должна быть по возможности близкой к наибольшей допустимой по тепловой характеристике электродвигателя. ¶

На электродвигателях, подверженных перегрузке по технологическим причинам, защита, как правило, должна выполняться с действием на сигнал и автоматическую разгрузку механизма. ¶

Действие защиты на отключение электродвигателя допускается: ¶

  • на электродвигателях механизмов, для которых отсутствует возможность своевременной разгрузки без останова, или на электродвигателях, работающих без постоянного дежурства персонала;
  • на электродвигателях механизмов с тяжелыми условиями запуска или самозапуска.

Для электродвигателей, которые защищаются от токов КЗ предохранителями, не имеющими вспомогательных контактов для сигнализации об их перегорании, должна предусматриваться защита от перегрузки в двух фазах. ¶

5.3.50. Защита синхронных электродвигателей от асинхронного режима может осуществляться при помощи реле, реагирующего на увеличение тока в обмотках статора; она должна быть отстроена по времени от пускового режима и тока при действии форсировки возбуждения. ¶

Защита, как правило, должна выполняться с независимой от тока характеристикой выдержки времени. Допускается применение защиты с зависимой от тока характеристикой на электродвигателях с отношением КЗ более 1. ¶

При выполнении схемы защиты должны приниматься меры по предотвращению отказа защиты при биениях тока асинхронного режима. Допускается применение других способов защиты, обеспечивающих надежное действие защиты при возникновении асинхронного режима. ¶

5.3.51. Защита синхронных электродвигателей от асинхронного режима должна действовать с выдержкой времени на одну из схем, предусматривающих: ¶

2) ресинхронизацию с автоматической кратковременной разгрузкой механизма до такой нагрузки, при которой обеспечивается втягивание электродвигателя в синхронизм (при допустимости кратковременной разгрузки по условиям технологического процесса); ¶

3) отключение электродвигателя и повторный автоматический пуск; ¶

4) отключение электродвигателя (при невозможности его разгрузки или ресинхронизации, при отсутствии необходимости автоматического повторного пуска и ресинхронизации по условиям технологического процесса). ¶

5.3.52. Для облегчения условий восстановления напряжения после отключения КЗ и обеспечения самозапуска электродвигателей ответственных механизмов следует предусматривать отключение защитой минимального напряжения электродвигателей неответственных механизмов суммарной мощностью, определяемой возможностями источника питания и сети по обеспечению самозапуска. ¶

Выдержки времени защиты минимального напряжения должны выбираться в пределах от 0,5 до 1,5 с — на ступень больше времени действия быстродействующих защит от многофазных КЗ, а уставки по напряжению должны быть, как правило, не выше 70% номинального напряжения. ¶

При наличии синхронных электродвигателей, если напряжение на отключенной секции затухает медленно, в целях ускорения действия АВР и АПВ может быть применено гашение поля синхронных электродвигателей ответственных механизмов с помощью защиты минимальной частоты или других способов, обеспечивающих быстрейшую фиксацию потери питания. ¶

Эти же средства могут быть использованы для отключения неответственных синхронных электродвигателей, а также для предупреждения несинхронного включения отключенных двигателей, если токи выключения превышают допустимые значения. ¶

В электроустановках промышленных предприятий в случаях, когда не может быть осуществлен одновременный самозапуск всех электродвигателей ответственных механизмов (см. 5.3.10), следует применять отключение части таких ответственных механизмов и их автоматический повторный пуск по окончании самозапуска первой группы электродвигателей. Включение последующих групп может быть осуществлено по току, напряжению или времени. ¶

5.3.53. Защита минимального напряжения с выдержкой времени не более 10 с и уставкой по напряжению, как правило, не выше 50% номинального напряжения (кроме случаев, приведенных в 5.3.52) должна устанавливаться на электродвигателях ответственных механизмов также в случаях, когда самозапуск механизмов после останова недопустим по условиям технологического процесса или по условиям безопасности и, кроме того, когда не может быть обеспечен самозапуск всех электродвигателей ответственных механизмов (см. 5.3.52). Кроме указанных случаев эту защиту следует использовать также для обеспечения надежности пуска АВР электродвигателей взаиморезервируемых механизмов. ¶

На электродвигателях с изменяемой частотой вращения ответственных механизмов, самозапуск которых допустим и целесообразен, защиты минимального напряжения должны производить автоматическое переключение на низшую частоту вращения. ¶

5.3.54. На синхронных электродвигателях должно предусматриваться автоматическое гашение поля. Для электродвигателей мощностью 2 МВт и более АГП осуществляется путем введения сопротивления в цепь обмотки возбуждения. Для электродвигателей мощностью менее 2 МВт допускается осуществлять АГП путем введения сопротивления в цепь обмотки возбуждения возбудителя. Для синхронных электродвигателей менее 0,5 МВт АГП, как правило, не требуется. На синхронных электродвигателях, которые снабжены системой возбуждения, выполненной на управляемых полупроводниковых элементах, АГП независимо от мощности двигателя может осуществляться инвертированием, если оно обеспечивается схемой питания. В противном случае АГП должно осуществляться введением сопротивления в цепь обмотки возбуждения. ¶

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

Дифференциальная защита двигателя схема соединения треугольник (Страница 1 из 2)

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений с 1 по 20 из 27

1 Тема от tddat 2011-07-08 04:46:03

  • tddat
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-07-08
  • Сообщений: 11
  • Репутация : [ 0 | 0 ]
Тема: Дифференциальная защита двигателя схема соединения треугольник

Имеется двигатель мощностью 2.5МВт, напряжение 6кВ, схема соединения статорной обмотки в треугольник. Необходимо осуществить защиту двигателя, в том числе дифференциальную на базе блока релейной защиты Sepam 80 M87.
Проблема заключается в том что трансформаторы тока находящиеся в «верху» (в ячейке ВВ) включены на фазный ток, а трансформаторы тока в «низу» находятся непосредственно в двигателе, в треугольнике и через них протекает ток линейный.
Возможно ли подключением трансформаторов тока в верху в треугольник в низу в звезду, а также изменением коэффициента трансформации добиться корректной работы дифференциальной защиты.
Проблемы не возникает в период когда двигатель находится в нормальном режиме работы, так как токи симметричны. Основная проблема это пуск двигателя. При пуске происходит искажение звезды токов и (ИМХО) возможно срабатывание дифференциальной защиты.

2 Ответ от grsl 2011-07-08 07:12:56

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Дифференциальная защита двигателя схема соединения треугольник

ИМХО, не знаю даное реле, сделайте себе жизнь проще. АД 2.5МВт достаточно серьёзная и дорогая машина, поставьте два реле, одно ДЗТ
скажем Sepam 87T и одно реле чисто защиту двигателя, будет вам и резервирование и с ДЗТ сможете крутить что и как хотите и Ктт и углы.

3 Ответ от laborant 2011-07-08 17:39:20 (2011-07-08 19:56:02 отредактировано laborant)

  • laborant
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-01-08
  • Сообщений: 48
  • Репутация : [ 0 | 0 ]
Re: Дифференциальная защита двигателя схема соединения треугольник

У нас на предприятии есть двигатели 4МВт с защитой Sepam М87, но Ктт с обеих сторон одинаковые. В вашем случае, если Ктт разные, неужели нельзя ввести Ктт1 сверху истиное, а Ктт2 с кратностью 1,732? Попробуйте прогрузить защиту, что при этом скажет Sepam. Сам конечно так не пробовал.

И еще, ТТ которые в двигателе, как сидят — после кабеля или уже отдельно в каждой обмотке (в фазе)? Просто, если после кабеля, то те и те ТТ мерят один и тот же ток вроде. или я что-то упустил.

4 Ответ от tddat 2011-07-11 10:27:24

  • tddat
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-07-08
  • Сообщений: 11
  • Репутация : [ 0 | 0 ]
Re: Дифференциальная защита двигателя схема соединения треугольник

Схема подключения ТТ вот такая, в первом посте почему то рисунок не прикрепился.
Sepam мы уже закупили М87, специально с дифференциальной защитной двигателя, другого оборудования докупить не получится, все придется строить на этом блоке.
Вопрос именно в диаграмме которую я нарисовал. Сумма токов в узле равна нулю но ток в фазе А и в плече АВ могут изменятся не пропорционально. Особенно это хорошо проявляется при пусках, когда звезда явна искажается.
Я не знаю какими будут токи при пуске и не могу построить векторную диаграмму, вполне возможно что как и в случае с трансформатором с подключением звезда/треугольник дифференциальная защита будет работать корректно.

5 Ответ от tddat 2011-07-11 10:28:41

  • tddat
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-07-08
  • Сообщений: 11
  • Репутация : [ 0 | 0 ]
Re: Дифференциальная защита двигателя схема соединения треугольник

http://rzia.ru/extensions/hcs_image_uploader/uploads/10000/0/10424/thumb/p164c0vtnu1bmv88n4vv15c41kap1.jpg
Вот еще раз пробова с картинкой.

Читать еще:  Шнур аварийного запуска двигателя
Ссылка на основную публикацию
Adblock
detector