Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сравнение характеристик модели двигателя с анодным слоем при работе на ксеноне, аргоне и азоте

Сравнение характеристик модели двигателя с анодным слоем при работе на ксеноне, аргоне и азоте

Характеристики двигателя с анодным слоем зависят от используемого рабочего тела. При переходе от традиционно применяемого и хорошо изученного ксенона к другим рабочим телам необходимо знать, как изменяются основные параметры двигателя. Приведены результаты исследования работы лабораторной модели двигателя с анодным слоем в низковольтном режиме на ксеноне, аргоне и азоте. Получены вольт-амперные характеристики и зависимости ионного тока от напряжения разряда модельного устройства для каждого из рабочих тел. Проведено сравнение энергетического и массового коэффициентов полезного действия и сделана оценка энергетической цены тяги при работе двигателя с анодным слоем на азоте и инертных газах.

Литература

[1] Марахтанов М.К., Пильников А.В. О возможности применения солнечной электрореактивной двигательной установки на низкоорбитальных малых космических аппаратах. Вестник МАИ, 2017, т. 24, № 4, с. 26–39.

[2] Schonherr T., Komurasaki K., Herdrich G. Analysis of Atmosphere-Breathing Electric Propulsion. IEEE Transactions on Plasma Science, 2015, vol. 43(1) pp. 287–294.

[3] ГОСТ 4401–81. Атмосфера стандартная. Параметры. Москва, Издательство стандартов, 1982. 181 с.

[4] Pekker L., Keidar M. Analysis of Airbreathing Hall-Effect Thrusters. Journal of propulsion and power, vol. 28, no. 6, doi: 10.2514/1.B34441.

[5] Barral S., Cifali G., Albertoni R., Andrenucci M. Conceptual Design of an Air-Breathing Electric Propulsion System. 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, July, 2015, IEPC-2015-271/ISTS-2015-b-271.

[6] Духопельников Д.В., Ивахненко С.Г., Курилович Д.А. Холловские двигатели на забортном воздухе для космических аппаратов на низкой опорной орбите. Наука и образование МГТУ им. Н.Э. Баумана, 2013, № 12. URL: http://www.technomag.bmstu.ru/doc/660910.html (дата обращения 02 октября 2017).

[7] Духопельников Д.В., Ивахненко С.Г., Рязанов В.А., Шилов С.О. О возможности использования холловского двигателя на забортном воздухе для удержания космического аппарата на низкой околоземной орбите. Наука и образование МГТУ им. Н.Э. Баумана, 2016, № 12. URL: http://old.technomag.edu.ru/doc/852758.html (дата обращения 04 октября 2017).

[8] Ерофеев А.И., Никифоров А.П., Попов Г.А., Суворов М.О., Сырин С.А., Хартов С.А. Разработка воздушного прямоточного электрореактивного двигателя для компенсации аэродинамического торможения низкоорбитальных космических аппаратов. Вестник НПО им. С.А. Лавочкина, 2016, № 3, с. 104–110.

[9] Andreussi T., Cifali G., Giannetti V., Piragino A., Ferrato E., Rossodivita A., Andrenucci M. Development and Experimental Validation of a Hall Effect Thruster RAM-EP Concept. 35th International Electric Propulsion Conference, 8–12 October 2017, IEPC-2017-377.

[10] Cifali G., Dignani D., Misuri T., Rossetti P., Andrenucci M., Valentian D., Marchandise F., Feili D., Lotz B. Experimental characterization of HET and RIT with atmospheric propellants. 32nd International Electric Propulsion Conference, 11–15 September, 2011, Wiesbaden, Germany, IEPC-2011-224.

[11] Духопельников Д.В., Юрченко А.А. Экспериментальное исследование технологического ускорителя с анодным слоем «Радикал» без катода компенсатора. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2004, № 3, с. 74–83.

[12] Гришин С.Д., Лесков Л.В., Козлов Н.П. Электрические ракетные двигатели космических аппаратов. Москва, Машиностроение, 1989. 276 с.

Европейцы испытали прямоточный ионный двигатель

Европейское космическое агентство (ЕКА) провело испытания прямоточного ионного двигателя, использующего в качестве рабочего тела воздух из окружающей атмосферы. Предполагается, что небольшие спутники с таким двигателем смогут практически неограниченно находиться на орбитах высотой 200 км или менее, сообщается в пресс-релизе агентства.

Принцип работы ионных двигателей основан на ионизации частиц газа и их разгоне с помощью электростатического поля. Частицы газа в таких двигателях разгоняются до значительно больших скоростей, чем в химических, из-за чего ионные двигатели имеют гораздо больший удельный импульс и расходуют меньше топлива. Но у них есть и важный недостаток — крайне малая тяга по сравнению с химическими двигателями. Из-за этого они редко применяются на практике, в основном на небольших аппаратах. К примеру, такие двигатели используются на зонде Dawn, находящемся сейчас на орбите карликовой планеты Церера, и будут использоваться в миссии BepiColombo, которая должна отправиться к Меркурию в конце 2018 года.

Как и в химических двигателях, в используемых сейчас ионных применяется запас топлива, как правило, ксенона. Но существует и концепция прямоточных ионных двигателей, которая, правда, пока не использовалась на летавших в космос аппаратах. Ее отличие в том, что в качестве рабочего тела предлагается использовать не конечный запас газа, загружаемый в бак перед запуском, а воздух из атмосферы Земли или другого атмосферного тела.

Предполагается, что относительно небольшой аппарат с таким двигателем сможет практически неограниченно находиться на низких орбитах высотой примерно от 150 километров, компенсируя атмосферное торможение тягой двигателя, работающего на воздухе, поступающем в него из атмосферы. В 2009 году EКА запустило спутник GOCE, который смог за счет постоянно включенного ионного двигателя с запасом ксенона пробыть на 255-километровой орбите почти пять лет. После этого агентство занялось разработкой прямоточного ионного двигателя для аналогичных низкоорбитальных спутников и теперь провело его первые испытания.

Испытания проходили в вакуумной камере, в которой располагался двигатель. Изначально в него подавали ускоренный ксенон. После этого в газозаборное устройство начали добавлять смесь кислорода с азотом, имитирующую атмосферу на высоте 200 километров. В конце испытаний инженеры провели тесты с исключительно воздушной смесью для проверки работоспособности в основном режиме.

Стоит отметить, что аналогичный двигатель разрабатывается специалистами МАИ и ЦАГИ, его испытания начались в 2017 году. Как сообщил изданию N+1 профессор МАИ Сергей Хартов, во время успешных испытаний этого двигателя использовался еще один — электрореактивный. Он подавал в устройство для забора газа поток воздуха с давлением 10 −5 от атмосферного и скоростью около восьми километров в секунду. Это имитировало реальные условия для спутника, летящего на низкой орбите. Предполагается, что прямоточный электрореактивный двигатель будет использоваться для поддержания небольших аппаратов на круговых орбитах высотой порядка 150–250 километров или на высокоэллиптических орбитах с низкой высотой в перигее.

Читать еще:  Двигатель 306dt технические характеристики

Электрический ракетный двигатель

Электрический ракетный двигатель
Использование
Развитиепригоден для полетов к внешним планетам Солнечной системы [1]
Массогабаритные
характеристики
Рабочие характеристики

Электри́ческий раке́тный дви́гатель (ЭРД) — ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц [2] . Также встречаются названия, включающие слова реактивный и движитель.

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ).

Содержание

  • 1 Введение
  • 2 Классификация ЭРД
  • 3 Краткие технические характеристики
  • 4 История
  • 5 Перспективы
  • 6 См. также
  • 7 Ссылки
  • 8 Примечания
  • 9 Литература

Введение [ править | править код ]

Идея использовать для ускорения электрическую энергию в реактивных двигателях возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский. В 1916—1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения рабочего тела (РТ), а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела. Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА [3] .

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

Начиная с середины 1960-х годов в СССР и в США начались натурные испытания ЭРД, а в начале 1970-х ЭРД стали использоваться как штатные ДУ.

В настоящее время ЭРД широко используются как в ДУ спутников Земли, так и в ДУ межпланетных КА.

Классификация ЭРД [ править | править код ]

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

Краткие технические характеристики [ править | править код ]

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

ЭРД характеризуются КПД — от 30 до 80 %.

История [ править | править код ]

В 1964 году в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте; получаемые плазменные сгустки имели температуру

30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мкФ, рабочее напряжение составляло

1 кВ). В США подобные испытания проводились в 1968 году на КА «ЛЭС-6». В 1961 году пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation ) развил на стенде тягу 45 мН при скорости истечения 10—70 км/с.

Читать еще:  Вибрация на холодном двигателе калины

1 октября 1966 года трёхступенчатой геофизической ракетой 1Я2ТА была запущена на высоту 400 км автоматическая ионосферная лаборатория «Янтарь-1» для исследования взаимодействия реактивной струи электрического ракетного двигателя (ЭРД), работавшего на аргоне, с ионосферной плазмой. Экспериментальный плазменно-ионный ЭРД был впервые включён на высоте 160 км, и в течение дальнейшего полёта было проведено 11 циклов его работы. Была достигнута скорость истечения реактивной струи около 40 км/с. Лаборатория «Янтарь» достигла заданной высоты полёта 400 км, полёт продолжался 10 минут, ЭРД работал устойчиво и развил проектную тягу в пять граммов силы. О достижении советской науки научная общественность узнала из сообщения ТАСС.

Во второй серии экспериментов использовали азот. Скорость истечения была доведена до 120 км/с. В 1966—1971 годах запущено четыре подобных аппарата (по другим данным, до 1970 года и шесть аппаратов).

Осенью 1970 года успешно выдержал испытания в реальном полёте прямоточный воздушный ЭРД. В октябре 1970 года на XXI конгрессе Международной астрономической федерации советские учёные — профессор Г. Гродзовский, кандидаты технических наук Ю. Данилов и Н. Кравцов, кандидаты физико-математических наук М. Маров и В. Никитин, доктор технических наук В. Уткин — доложили об испытаниях воздушной двигательной установки. Зарегистрированная скорость реактивной струи достигла 140 км/с.

В 1971 году в системе коррекции советского метеорологического спутника «Метеор» работали два стационарных плазменных двигателя разработки Института атомной энергии им. И. В. Курчатова и ОКБ Факел, каждый из которых при мощности электропитания

0,4 кВт развивал тягу 18—23 мН и скорость истечения свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений один из двигателей проработал непрерывно 140 ч. Эта электрореактивная двигательная установка изображена на рисунке.

Также электроракетные двигатели используются в миссии Dawn и в проекте BepiColombo.

Перспективы [ править | править код ]

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами, они способны работать длительное время и осуществлять медленные полёты на большие расстояния [4] [5] . Самые совершённые на сегодняшний день электрические ракетные двигатели имеют ΔV до 100 км/с и при использовании ядерных источников энергии пригодны для полётов к внешним планетам Солнечной системы, но недостаточно мощные для межзвёздного полёта [4] [5] . Если же говорить о межзвездном полете, то электроракетный двигатель с ядерным реактором рассматривался для проекта Дедал, но был отвергнут из-за малой тяги, большого веса необходимого для преобразования ядерной энергии в электрическую, оборудования, и как следствие, небольшого ускорения, которому потребовались бы столетия для достижения нужной скорости [6] [7] [8] . Однако электро-ракетный способ межзвёздного полёта теоретически возможен при внешнем источнике энергопитания через лазер на солнечные батареи космического аппарата [9] [10] [11] .

В настоящее время многими странами исследуются вопросы создания пилотируемых межпланетных кораблей с ЭРДУ. Существующие ЭРД не являются оптимальными для использования в качестве маршевых двигателей для таких кораблей, в связи с чем в ближайшем будущем следует ожидать возобновления интереса к разработке сильноточных ЭРД на жидкометаллическом РТ (висмут, литий, калий, цезий) с электрической мощностью до 1 МВт, способных длительно работать при токах силой до 5—10 кА. Эти РД должны развивать тягу до 20—30 Н и скорость истечения 20—30 км/с при КПД 30 % и более. В 1975 г. подобный РД испытан в СССР на ИСЗ «Космос-728» (РД электрической мощностью 3 кВт, работающий на калии, развил скорость истечения

Кроме России и США исследованиями и разработкой ЭРД занимаются также в Великобритании, ФРГ, Франции, Японии, Италии. Основные направления деятельности этих стран: ИД (наиболее успешны разработки Великобритании и Германии, особенно — совместные); СПД и ДАС (Япония, Франция); ЭТД (Франция). В основном эти двигатели предназначены для ИСЗ.

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

В России разрабатывается прямоточный электрореактивный двигатель для движения в разреженной атмосфере

Российские учёные из Центрального аэрогидродинамического института (ЦАГИ) совместно с коллегами из МАИ успешно разрабатывают инновационный прямоточный воздушный электрореактивный двигатель (ПВЭРД). Следует сразу отметить, что данная силовая установка отличается от других агрегатов не просто чуть большей мощностью, или меньшими размерами. Её отличие довольно принципиально, поскольку двигатель будет использовать совершенно новые принципы работы. Речь идёт о двигателе, который понадобится для выведения космических аппаратов на орбиту. Ракеты смогут использовать подобный агрегат как вспомогательную установку на сверхнизких орбитах (до 250 км).

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Его главное достоинство – способность автономной работы. Если быть более точным, агрегату вообще не нужно будет традиционное топливо. Вместо него электрореактивный двигатель просто будет использовать разряженный воздух. Именно он и станет «топливом» для нового образца силовой установки.

По словам специалистов из ЦАГИ, разреженный атмосферный воздух будет ионизироваться и обеспечивать разгон в электромагнитном поле. Итог – двигатель сможет генерировать плазму, что приведёт в движение аппарат, выводимый на орбиту.

По разным оценкам экспертов, использование подобного двигателя на этапе когда проходит полёт на сверхнизкой орбите, позволит в целом сократить расходы запуска объекта в космос на 300 и более процентов. Сообщается, что учёные уже провели соответствующие тесты в специальной аэродинамической трубе и подтвердили важный аспект работы силовой установки. Впрочем, пока что нет точной информации о том, когда начнутся испытания полностью готового опытного образца, а также в какой период двигатели будут активно применять для полётов в космос.

Справка:

Ракетный двигатель (РД), в котором в качестве источника энергии для создания тяги используетсяэлектрическая энергия бортовой энергоустановки космического летательного аппарата (обычно солнечныеили аккумуляторные батареи). Достоинство ЭРД — в их высоком удельном импульсе (удельной тяге) благодаря большой скорости истечения рабочего тела (См. Рабочее тело) (РТ), достигающей 10—100 км/сек.По удельному импульсу ЭРД многократно превосходят химические ракетные двигатели (См. Химическийракетный двигатель), у которых скорость истечения РТ не превышает 4,5 км/сек. По принципу действия ЭРД подразделяются на электротермические, электростатические (ионные, коллоидные) и электромагнитные(плазменные).

Читать еще:  Что означает mpi двигатель

В электротермических РД электрическая энергия используется для нагрева РТ с целью обращения его вгаз с температурой 1000-5000 К; газ, истекая из реактивногосопла (аналогичного соплу химического РД), создаёт тягу. В качестве РТ используются вещества с малой молекулярной массой (например, водород, аммиак, гидразин), нагреваемые при помощи поверхностных нагревателей (рис. 1), дугового разряда (рис. 2) или (в экспериментальных ЭРД) высокочастотного электромагнитного поля. Удельный импульсэлектротермического РД составляет 1,5—10 (кн·сек)/кг, плотность тяги (отношение тяги к поперечному сечению реактивной струи) 0,3—3 Мн/м2, время работы от нескольких ч до нескольких сотен ч.

В электростатическом (ионном) РД вначале производится ионизация РТ, после чего ионы и электроныраздельно ускоряются в электростатическом поле (при помощи системы электродов), а затем вновьперемешиваются для нейтрализации объёмного заряда и, истекая, создают тягу (рис.3). Различают электростатические РД с поверхностной ионизацией (См. Поверхностная ионизация) и объёмной ионизацией (электронным ударом); в качестве РТ в первых используется легко ионизируемый цезий, во вторых — любые вещества с большой атомной массой (например, висмут). Вместо ионов в электростатических РД могут ускоряться заряженные (например, за счёт контактной разности потенциалов при отрыве капли от поверхности электрода) микроскопические капли. Такие ЭРД называются коллоидными. Значение ускоряющего потенциала составляет для них около 10—20 кв (для ионных РД — 2—7 кв) при плотности тока в несколько ма/см2. Удельный импульс электростатических РД 15—100 (кн·сек)/кг, плотность тяги 30—50 н/м2, время работы — 1 год и более.

В электромагнитном РД рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещенных электрическом и магнитном полях. Различают ЭРД с внешним и собственным магнитным полем. К первым относятся классические Е-Н ускорители плазмы и т. н. холловские ЭРД с замкнутым дрейфом электронов; во-вторых, магнитное поле создаётся током, протекающим в ускоряемой плазме; они подразделяются на импульсные и квазистационарные ЭРД. Рабочий цикл импульсного ЭРД соответствует периоду электрического пробоя РТ (обычно фторопласта), при котором создаётся плазма; начальный потенциал пробоя — несколько кв, удельный импульс 40—100 (кн·сек)/кг, плотность тяги 10-9—10-8 н/м2, число циклов ЭРД достигает 1 млн. В квазистационарном ЭРД с целью создания сильного магнитного поля через РТ пропускается ток силой в десятки ка и напряжением в десятки в. Удельный импульс составляет 30—50 (кн·сек)/кг, плотность тяги несколько кн/м2, время работы — десятки ч. О типах плазменных ЭРД и методах создания плазмы в них см. в ст. Плазменные ускорители.

Ограниченное применение ЭРД связано с необходимостью большого расхода электроэнергии (10—100 квт на 1 н тяги). Из-за наличия бортовой энергоустановки (и др. вспомогательных систем), а также из-за малой плотности тяги аппарат с ЭРД имеет малое ускорение. Поэтому ЭРД могут быть использованы только в космических летательных аппаратах (КЛА), совершающих полёт либо в условиях слабых гравитационных полей, либо на околопланетных орбитах. Они применяются для ориентации, коррекции орбит КЛА и др. операций, не требующих больших затрат энергии. Электростатические, плазменные холловские и др. ЭРД рассматриваются как перспективные в качестве основных двигателей КЛА. Из-за малой отбрасываемой массы РТ время непрерывной работы таких ЭРД будет измеряться месяцами и годами; их использование вместо существующих химических РД позволит увеличить массу полезного груза КЛА.

Идея использования электрической энергии для получения тяги выдвигалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916—17 Р. Годдард (США) подтвердил опытами реальность этой идеи. В 1929—33 В. П. Глушко (СССР) создал экспериментальный ЭРД. В 1964 в СССР на КЛА типа «Зонд» испытаны плазменные импульсные РД, в 1966—71 на КЛА «Янтарь» — ионные РД, в 1972 на КЛА «Метеор» — плазменные квазистационарные РД. Различные типы ЭРД испытаны начиная с 1964 в США: в баллистическом, а затем в космическом полёте (на аппаратах АТС, СЕРТ-2 и др.). Работы в этой области ведутся также в Великобритании, Франции, ФРГ, Японии.

Лит.: Корлисс У. Р., Ракетные двигатели для космических полетов, пер. с англ., М., 1962; Штулингер Э., Ионные двигатели для космических полетов, пер. с англ.. М., 1966; Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Гуров А. Ф., Севрук Д. Д., Сурнов Д. Н., Конструкция и расчет на прочность космических электроракетных двигателей, М., 1970; Фаворский О. Н., Фишгойт В, В., Янтовский Е. И., Основы теории космических электрореактивных двигательных установок, М., 1970; Гришин С. Д., Лесков Л. В., Козлов Н. П., Электрические ракетные двигатели, М., 1975.

Рис. 1. Схема электротермического двигателя с поверхностным нагревателем: 1 — подвод рабочего тела; 2 — камера нагрева и сопло (вольфрам); 3 — нагревающий элемент (вольфрамовая проволока): 4 — опора нагревающего элемента. Рис. 2. Схема электротермического двигателя с нагревом при помощи дугового разряда: 1 — подвод рабочего тела; 2 — катод (вольфрам); 3 — анод (вольфрам); 4 — сопло (вольфрам); 5 — резьбовая втулка.

Рис . 3 . Схема электростатического ( ионного ) двигателя: 1 — подвод рабочего тела ; 2 — ионизатор ; 3 — пучок ионов ; 4 — фокусирующий электрод ; 5 — ускоряющий электрод ; 6 — замедляющий электрод ; 7 — нейтрализатор ; 8 — основной источник энергии ; 9 — вспомогательный источник энергии .

Источники: http://ru-good.ru/, https://dic.academic.ru/

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Ссылка на основную публикацию
Adblock
detector