Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент мощности

Коэффициент мощности

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Содержание

  • 1 Определение и физический смысл
  • 2 Прикладной смысл
  • 3 Математические расчёты
  • 4 Типовые оценки качества электропотребления
    • 4.1 Несинусоидальность
  • 5 Коррекция коэффициента мощности
    • 5.1 Разновидности коррекции коэффициента мощности
  • 6 Ссылки

Определение и физический смысл [ править | править код ]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos ⁡ φ varphi > (где φ — сдвиг фаз между силой тока и напряжением) либо λ . Когда для обозначения коэффициента мощности используется λ , его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл [ править | править код ]

Можно показать, что если к источнику синусоидального напряжения (например, розетка

230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Математические расчёты [ править | править код ]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

  1. χ = P S >>
  2. P = U × I × cos ⁡ φ
  3. Q = U × I × sin ⁡ φ
  4. S = ∑ k = 1 ∞ ( U ) × I = P 2 + Q 2 + T 2 ^displaystyle (U)times I=+Q^<2>+T^<2>>>>

Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления [ править | править код ]

Значение
коэффициента
мощности
ВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos ⁡ φ varphi > 0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ 95…100 %80…95 %65…80 %50…65 %0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos ⁡ φ varphi > близко к 1, то есть к идеальному значению.

Несинусоидальность [ править | править код ]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности [ править | править код ]

Коррекция коэффициента мощности (англ. power factor correction , PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos ⁡ φ . Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт [ источник не указан 3771 день ] . Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

Динамические нагрузки эл. приводов

Правые части уравнений движения эл. привода представляют собой моменты действующих в системе сил инерции. Их называют динамическими моментами и соответственно, динамическими силами: ; .

В уравнении жесткого приведенного механического звена величина

Определяет собой суммарную динамическую нагрузку. Знак Мдин. Зависит от знака ускорения. При Мдин. совпадает со знаком скорости w, а при — противоположен знаку скорости. При ускорении системы Мдин. является тормозным по отношению к моменту М двигателя, а при замедлении – является движущим и совпадает с направлением момента двигателя. Освобождающаяся при снижении скорости кинетическая энергия расходуется на совершение работы по преодолению результирующего М-Мс, который в этом случае является тормозным.

Максимальная полная нагрузка двигателя, определяемая суммой максимальной статической и динамической нагрузок, определяет кратковременную перегрузку двигателя и не должна превышать допустимой перегрузочной способности двигателя:

, где

Eрасч – расчетное заданное ускорение.

Динамический момент Мдин при пуске частично затрачивается на ускорение ротора (якоря) двигателя, а в остальной части через передачи воздействует на механизм, ускоряя его массы и совершая работу по увеличению в них запаса кинетической энергии. Следовательно, динамическая нагрузка при пуске увеличивает полную нагрузку передач на величину динамического момента механизма. В жесткой двухмассовой механической системе при J2>>J1 это увеличение может быть значительным, а при J2

  • Определение наивыгоднейшего передаточного отношения
  • Движение инерционных масс эл. привода С учетом упругих связей движущихся масс
  • Рекомендации по выбору бизнеса
  • Строительное оборудование МСД
  • Тепловые насосы

Теория электропривода

Частотно регулируемый электропривод

Производим и продаем частотные преобразователи: Цены на преобразователи частоты(21.01.16г.): Частотники одна фаза в три: Модель Мощность Цена CFM110 0.25кВт 2300грн CFM110 0.37кВт 2400грн CFM110 0.55кВт 2500грн CFM210 1,0 кВт 3200грн …

Переходные процессы при пуске и торможении электропривода с короткозамкнутым Асинхронным двигателем (АД)

В большинстве случаев к. з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в …

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока

Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788

Выбор частотного преобразователя

Как правильно выбрать преобразователь частоты

ООО «ЮгПромСнаб» официальный представитель компании LENZE (США) поставляет по заводской стоимости в любой регион России.

Тел/факс: (863) 230-88-55, 230-88-44

Очень важно сделать правильный выбор преобразователя. От него будет зависеть эффективность и ресурс работы преобразователя частоты и всего электропривода в целом. Так если мощность преобразователя будет слишком завышена, он не сможет в должной мере обеспечить защиту двигателя. С другой стороны, если мощность преобразователя мала, он не сможет обеспечить высоко динамичный режим работы и из-за перегрузок может выйти из

Правильная эксплуатация так же сильно влияет на срок службы преобразователя. При выборе преобразователя частоты надо руководствоваться не только мощностью подключаемого двигателя, а также диапазоном рабочих скоростей двигателя, диапазоном рабочих моментов вращения, характером нагрузки и циклограммой работы. В таблице перечислены факторы, которые надо рассмотреть при выборе преобразователя.

Классификация

Связанные характеристики

Скорость и момент

Фрикционная нагрузка и подъем груза.

Нагрузка с передачей и

Характерис- тики скорости и момента

Постоянная скорость Уменьшающийся момент Уменьшающаяся скорость

Периодически изменяющаяся нагрузка Высокий начальн. момент Низкий начальн. момент

Продолжительный режим на ном. скор. Продолжительный режим на низкой/средней скорости.

Максимальный вых. ток (мгновенный)

Постоянный вых. ток (продолжит)

Мощность или импеданс источника питания (распред. трансформатора + провода).

Скачки напряжения или дисбаланс фаз.

Число фаз, частота.

Механическое трение, потери в проводниках

Изменение рабочего цикла

C.1 Выбор ПЧ по энергетике (по электрической совместимости с двигателем, как электрической нагрузкой)

1. При работе одного ПЧ с одним двигателем выбор ПЧ может производиться несколькими способами:

1.1 Паспортная мощность ПЧ [кВт] должна быть больше или равна паспортной мощности двигателя [кВт]. Причем, изготовители ПЧ всегда указывают, что этот критерий распространяется на двигатели с двумя парами полюсов (2p=4 и синхронная скорость вращения соответственно равна 1500 об/мин), работающих на нагрузку с постоянным моментом (транспортер, конвейер), для преобразователей с перегрузочной способностью

150% и, — работающих на центробежные насосы и вентиляторы, для ПЧ с перегрузочной способностью 120%.

Примечание. Согласно Российским и международным стандартам для электродвигателей принимается, что мощность в кВт относится к механической мощности двигателя на валу, а не к потребляемой от источника питания активной мощности, как это принято для других потребителей электрической энергии!

ПЧ с перегрузочной способностью 150% для работы на центробежный насос часто можно выбрать на ступень ниже паспортной мощности [кВт] двигателя. Многие производители нормируют номинальные токи и мощности ПЧ при работе на переменный и постоянный момент. Некоторые производители выделяют специальную серию для работы только на нагрузку с переменным моментом.

Для работы в составе подъемного механизма может потребоваться ПЧ, имеющий номинальную мощность, на две ступени выше паспортной мощности [кВт] двигателя.

1.2 Номинальный длительный ток ПЧ должен быть больше (или равен) фактического длительного тока, потребляемого двигателем.

Примечание. Пусковой ток двигателя ограничивается преобразователем по уровню (120-200% от номинального тока ПЧ) и по времени действия (обычно до 60 сек), поэтому, условия пуска двигателя при питании напрямую от сети и при питании от ПЧ отличаются. При подаче номинального напряжения на двигатель напрямую (например, рубильником, пускателем) от сети, пусковой ток может достигать семикратного значения от номинального тока двигателя. При пуске (это плавный пуск, с плавным нарастанием частоты питающего двигатель напряжения) двигателя от ПЧ пусковой ток может быть снижен (до номинального или реально потребляемого двигателем в установившемся режиме) настройками (главным образом – установкой времени разгона). В случае, если требуется быстро разогнать инерционную нагрузку может потребоваться ПЧ большей номинальной мощности, чем мощность двигателя. Численная проверка возможности обеспечения преобразователем требуемого пуска двигателя приведена ниже.

1.3 Более точные критерии выбора ПЧ для различных условий использования привода:

а) работа двигателя на установившейся скорости.

Если ПЧ работает с одним двигателем, требуемая полная пусковая мощность ПЧ (кВА)

Какой на самом деле мощности нужен ДГУ?

Очень часто этот вопрос возникает даже у специалистов не говоря о простых обывателях, которые сталкивается с необходимостью подбора дизель-генераторной установки. Не так давно у нас с коллегами зашел спор на эту тему что немудрено, поскольку в техническом описании одной и той же модели ДГУ можно встретить несколько разных параметров мощности с разными названиями единицами измерения и величинами. И это только для самого агрегата в целом не говоря уже о том, что сам двигатель и генератор тоже имеют собственные параметры! Так что же они все значат и на какую нагрузку в конечном итоге можно нагрузить конкретную модель ДГУ? Ведь неправильный подбор может привести к серьезным негативным последствиям вплоть до выхода из строя агрегата не говоря уже о лишних расходах. Попробуем внести ясность в этот вопрос.

Сначала мы разберем какие есть у ДГУ режимы работы. В соответствии со стандартом ISO 8528 ДГУ может использоваться в трех различных режимах работы:

  • Режим Standby – ДГУ используется как резервный источник, для аварийного питания на период отсутствия питания внешней сети, наработка до 200 часов в год при максимальной мощности.
  • Режим Prime – ДГУ используется как первичный источник, может работать неограниченное время на переменной нагрузке до 70% от максимальной мощности или не более 500 часов в год на 90% от максимальной мощности.
  • Режим Continuous – ДГУ используется как основной источник и может работать неограниченное время на заявленной в данном режиме мощности – обычно это 70% от максимальной мощности.

Из описания режимов мы уже видим, что при различных условиях одна и та же ДГУ способна обеспечить питанием различные по мощности нагрузки. Это объясняется тем, что на максимальной мощности ДГУ может работать только ограниченное время. Работа на мощности равной 70% от максимальной является наиболее оптимальной для дизельного двигателя и в этом режиме ДГУ может работать неограниченно долго. При этом любой дизель-генератор имеет два значения мощности: PRP – основная мощность и LTP – мощность ограниченная во времени или резервная мощность обычно LTP это 110% от основной.

Теперь можно перейти к описанию какая бывает нагрузка – нагрузка может быть активной и реактивной. Активная нагрузка это все потребители, которые преобразуют электрическую энергию в тепло и свет, к ним относятся лампы накаливания, чайники утюги электроплиты и тд. Данные приборы в своих электрических схемах не содержат емкости и индуктивности. Реактивная нагрузка напротив содержит ёмкости и индуктивности, они генерируют электромагнитные поля, накапливают и отдают электроэнергию. Типичной реактивной нагрузкой является электродвигатель.

Двигатель ДГУ нагружает активная нагрузка, но величина тока протекающего по генератору определяется суммой активной и реактивной нагрузки, эта сумма и является полной мощностью. Вот почему в техническом описании для каждого значения мощности (PRP и LTP) мы можем увидеть 2 мощности с разными единицами измерения. Одна из них полная и измеряется в киловольт-амперах (кВА), а вторая активная и измеряется в киловаттах (кВт). Для расчета полной или активной мощности используется коэффициент мощности — cosf, обычно он указывается на приборах которые относятся к реактивной нагрузке и равен 0,8. Таким образом если активная мощность Р составляет 100кВт то полная S будет равна Р/0,8=125кВА.

Как мы видим в каждом конкретном случае ДГУ надо выбирать исходя из конкретных потребностей, учитывая все факторы: тип нагрузки, режим работы и многое другое. Это задача успешно решается нашими специалистами в ходе проектирования при подборе оборудования для конкретного объекта. Конечно, для грамотного подбора требуются исходные данные и предварительные расчеты, которые будут учитывать тип всех потребителей их пусковые токи и прочие характеристики. Недостаточно просто сложить мощности всех приборов и на получившийся результат подобрать ДГУ, надо учитывать коэффициент использования электроприборов, что то работает только в дневное время, а что то наоборот ночью. Если подбор осуществлять неграмотно ДГУ может оказаться как сильно переразмерен так и напротив быть недостаточно мощным – все это отрицательно скажется как на стоимость так и на дальнейшую эксплуатацию. Электроагрегат работ оптимально, когда мощность подключенной к нему нагрузки составляет от 40 до 80% максимальной мощности. Кроме того надо учитывать шаг наброса нагрузки, ДГУ не способен принять сразу 100% своей мощности. Нагрузка должна нарастать плавно, максимальная нагрузка, которую ДГУ способен взять за один раз составляет обычно 50%, но зависит конечно от типа и характеристик конкретной модели. Для выполнения такого ограничения использует обычно специальный диспетчер нагрузки, который обеспечивает плавный наброс подключая потребителей постепенно. Все электромоторы имеют очень большие пусковые токи. Возникает вопрос как это учитывать при подборе ДГУ? Необходимо сложить пусковые токи всех одновременно запускаемых приборов и эта величина не должна превышать максимальную мощность ДГУ. Также можно использовать устройства плавного пуска приборов, которые позволяют контролировать пусковой ток. Кроме того существуют варианты когда нагрузка от потребителей сильно меняется в зависимости от каких то факторов, например времени года. Хорошим примером здесь является котельная – большое потребление электропитания зимой и совсем незначительное летом. Вполне вероятно что величина нагрузки на ДГУ летом будет даже меньше минимально необходимой и в этом случае что бы обеспечить работоспособность придется искусственно нагружать ДГУ до требуемой величины. Обычно минимум нагрузки составляет 30% от максимальной мощности. Хорошим решением в этом случае будет связка из нескольких электростанций. Установки могут работать как отдельно так и синхронно все вместе. Умные панели управления будут самостоятельно отслеживать необходимую мощность и оставлять в работе столько ДГУ сколько требуется, автоматически подключать или останавливать электроагрегаты ориентируясь на запрограммированные уставки мощности – минимальные и максимальные значения при этом все ДГУ будут работать в оптимальном для себя режиме. Кстати несколько установок могут стоить даже дешевле чем одна станций большой мощности. Еще раз хочу обратить внимание – если мощность одной ДГУ или комплекса из нескольких станций подобрана неверно это приведет к серьезным проблемам. Например вы покупаете станцию подобрав мощность самостоятельно «на глазок» ошиблись и стоило взять агрегат помощнее, в итоге в процессе эксплуатации агрегат будет подвергаться повышенным нагрузкам это обязательно скажется на ресурсе двигателя снизит срок эксплуатации и приведет к повышенному расходу топлива и масла. Если вы не обладаете достаточным опытом и знаниями для правильного подбора ДГУ вам обязательно надо обратиться за помощью к специалистам. Наша компания накопила колоссальный опыт в этом вопросе и мы с радостью поделимся им с вами и поможем с правильным выбором. Звоните и наши сотрудники помогут вам определиться, подобрать надежное и качественное оборудование. Мы примем во внимание все факторы и нюансы, рассчитаем необходимую мощность предоставим гарантию на результат и ваша ДГУ будет радовать вас долгие годы своей надежной работой.

Читать еще:  Что такое объем двигателя авто
Ссылка на основную публикацию
Adblock
detector