Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Energy education

Energy
education

сайт для тех, кто хочет изучать энергетику

Двигатели и нагнетатели

Тепловые двигатели

Тепловой двигатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры.

5. Роторно-поршневые двигатели

Роторно-поршневой двигатель внутреннего сгорания (РПД, двигатель Ванкеля), конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде, ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания. Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т.п. Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Инженерам фирмы Mazda удалось решить все основные проблемы РПД — токсичность выхлопа и неэкономичность. По сравнению с двигателями-предшественниками «Renesis», удалось сократить потребление масла на 50 %, бензина на 40 % и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухкамерный двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет объём 1.6 литра, и большую мощность, меньше нагревается.

Автомобили марки Mazda с буквами RE в наименовании могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня. Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн Mazda, оснащая доработанными моделями роторных двигателей автомобили серии RX.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

Роторно-поршневой двигатель. вызов поршням!

Роторный двигатель Ванкеля

В 1957 году на свет появилась альтернатива ДВС – роторно-поршневой двигатель (РПД), изобретенный инженерами компании NSU Феликсом Ванкелем иВальтером Фройде. В основе его конструкции лежит трехгранный ротор, выполненный по форме треугольника «Рело», двигающийся по сложной траектории, называемой эпитрохоидой. Основными преимуществами такого двигателя перед двигателем внутреннего сгорания является высокая удельная мощность, выдаваемая роторно-поршневым двигателем в течение трех четвертей оборота выходного вала (поршень ДВС выдает мощность только с одной четверти оборота). Высокая мощность также обуславливается и меньшим количеством деталей (на 30-40%) по сравнению с обычным бензиновым двигателем. Вследствие этого роторно-поршневой двигатель достаточно компактен и легок, что положительно влияет на его динамические характеристики. Однако роторно-поршневой двигатель имеет и свои недостатки – высокое потребление бензина и масла, а также быстрый износ уплотнителей между камерами сгорания, приводящий к резкому снижению КПД двигателя. Однако, несмотря на недостатки, новый роторно-поршневой двигатель, изобретенный Ванкелем, заинтересовал многих автопроизводителей, и в семидесятых годах патент на «ротор» приобрели почти все крупные автокомпании мира. Впрочем, с началом серийного производства автомобилей с роторно-поршневыми двигателями выяснилось, что двигатель Ванкеля слишком прожорлив и недостаточно надежен. Первые моторы выходили из строя уже после 50 тысяч километров. Роторно-поршневой двигатель снискал плохую репутацию, и многие производители автомобилей отказались от разработки и использования роторного двигателя. Но не все! Некоторые компании все-таки смогли найти применение изобретению Ванкеля.

Специальное конструкторское бюро «Автоваза» с 1974 занимается разработкой и производством роторно-поршневых двигателей. Современные двигателиВАЗ 415 и ВАЗ 425, производимые с 1982 года, применяются в основном в малой авиации из-за своей высокой удельной мощности (около 140 л.с.) и компактности. Также СКБ выпускает данные роторно-поршневые двигатели, адаптированные для любых автомобилей ВАЗ. Долгое время такие силовые агрегаты устанавливались по спецзаказу только в автомобили преследования спецслужб, а с 1997 года отечественный ротор стал доступен для всех желающих. Однако из-за малых объемов продаж СКБ РПД отказалось от производства роторно-поршневых двигателей для автомобилей, решив отдать предпочтение выпуску силовых агрегатов для малой авиации.

Серийным же производством автомобилей с роторно-поршневым двигателем на сегодняшний день занимается только компания Mazda Motors. Инженерам изMazda удалось создать двигатель «Renesis», решивший основные проблемы роторного двигателя – неэкономичность, высокую токсичность выхлопа и малый ресурс. При этом с объема 1.3 л двигатель выдает 232 лошадиные силы. Однако 1 литр минерального масла на 1000 км Renesis все-таки потребляет, и ресурс двигателя не превышает 100 000 километров.

Читать еще:  Что происходит с двигателем зимой

Двигатель Найта

Механизм газораспределения – один из самых сложных и шумных в традиционном двигателе. Поэтому многие изобретатели пытались полностью избавиться от него или хотя бы существенно модернизировать.

Пожалуй, самой успешной альтернативной конструкцией стал мотор, созданный американским инженером Чарльзом Найтом в начале ХХ века. Привычных клапанов и их громоздкого привода в этом двигателе не было – их заменили специальные золотники в виде двух гильз, размещенных между цилиндром и поршнем. С помощью оригинального привода золотники перемещались вверх-вниз и в необходимый момент открывали окна в стенке цилиндра, через которые внутрь поступала свежая горючая смесь, и удалялись в атмосферу выхлопные газы.

Такой мотор был сложен в изготовлении и достаточно дорог, зато он отличался очень тихой, практически бесшумной по меркам того времени работой. Поэтому многие компании, выпускавшие представительские автомобили, стали устанавливать двигатели Найта на свои модели. Покупатели готовы были переплачивать ради высокого комфорта. В начале прошлого века подобные моторы использовали такие известные фирмы как “Daimler”, “Mercedes-Benz”, “Panhard Levassor”.

Однако первоначальный восторг от бесшумной работы двигателей Найта вскоре сменился разочарованием. Конструкция оказалась ненадежной, к тому же отличалась повышенным потреблением бензина и масла из-за высокого трения между золотниками и стенками цилиндра, которое в разы возрастало при увеличении оборотов коленвала. Поэтому позади автомобилей с такими моторами всегда вился характерный сизый дымок.

Эпоха двигателей Найта закончилась в 30-е годы, когда на рынке появились моторы с усовершенствованным клапанным механизмом газораспределения, который почти избавился от чрезмерной шумности. Тем не менее, в наши дни то и дело появляются сообщения о различных опытных вариантах бесклапанных двигателей, так что не исключено, что в будущем мы еще увидим такие моторы на серийных машинах.

ДВС с циклом Аткинсона

Обычный 4х-тактный двигатель внутреннего сгорания работает по циклу, изобретенному еще в 1876 году немецким инженером Николаусом Отто: в цилиндре при определенных условиях попеременно происходят определенные процессы – впуск, сжатие, рабочий ход и выпуск. В 1886 году эту схему попытался усовершенствовать британский инженер Джеймс Аткинсон.

На первый взгляд его двигатель мало отличался от прародителя – тот же порядок тактов, схожий принцип работы… Однако на самом деле различий было немало. К примеру, за счет специального коленвала со смещенными точками крепления Аткинсону удалось снизить потери на трение в цилиндре и поднять степень сжатия мотора.

Также в подобных двигателях другие фазы газораспределения. Если на обычном ДВС впускной клапан закрывается практически сразу по прохождении поршнем нижней мертвой точки, то в цикле Аткинсона такт впуска значительно длиннее – клапан закрывается лишь на полпути поршня к верхней мертвой точке, когда в цикле Отто уже вовсю идет такт сжатия.

Что это дало? Самое главное – лучшее наполнение цилиндров благодаря снижению так называемых насосных потерь. Не вдаваясь в технические подробности, лишь скажем, что в результате двигатель Аткинсона примерно на 10% эффективнее (и экономичнее) обычного ДВС.

Однако на серийных автомобилях моторы, действующие по схеме Аткинсона, до последнего времени не встречались. Дело в том, что такой двигатель может правильно работать и выдавать хорошие показатели лишь на высоких оборотах. А на холостых он, наоборот, норовит заглохнуть. Чтобы решить проблему наполнения цилиндров на малых оборотах, на подобные моторы приходится устанавливать механические нагнетатели (такую схему иногда не совсем верно еще называют “цикл Миллера”), что еще больше усложняет и удорожает конструкцию. К тому же потери на привод компрессора практически сводят на нет преимущества необычного мотора.

Поэтому серийные массовые автомобили с двигателями Аткинсона можно пересчитать по пальцам одной руки. Характерный пример – Mazda Xedos 9/Eunos 800, которая выпускалась с 1993 по 2002 год и оснащалась 210-сильным 2,3-литровым V6.

Зато в чистом виде моторы Аткинсона оказались очень подходящими для гибридных моделей вроде знаменитого Toyota Prius или новейшего Mercedes-Benz S-класса, который вскоре пойдет в серийное производство. Ведь на малых скоростях такие машины передвигаются в основном на электротяге, а бензиновый двигатель подключается только при разгоне или при больших нагрузках. Эта схема, с одной стороны, позволяет нивелировать врожденные недостатки мотора Аткинсона, а другой – максимально использовать его положительные качества.

Что такое роторно поршневой двигатель

6 февраля 2020 г., AEX.RU – В рамках совместного проекта Фонда перспективных исследований (ФПИ) и Центрального института авиационного моторостроения (ЦИАМ) имени П.И. Баранова разработан перспективный авиационный односекционный турбированный роторно-поршневой двигатель (РПД). При рабочем объеме 0,4 литра и весе роторно-статорного модуля РПД в 28 килограммов достигнутое при моторных определительных испытаниях максимальное пиковое значение мощности составило более 120 лошадиных сил. Об этом сообщает пресс-служба ФПИ.

Основная задача, которая стояла перед разработчиками нового двигателя – ликвидация недостатка РПД, а именно низкого ресурса основных элементов двигателя и повышение общего ресурса силовой установки при улучшении ее высоких удельных характеристик. Решение состояло в применении в конструкции композиционных металлокерамических материалов нового поколения с высокими физико-механическими характеристиками. Композиты, в частности, применены в износостойкой вставке статора, радиальных, маслосъемных и торцевых уплотнениях ротора, подшипниковых узлах, износостойком покрытии эксцентрикового вала, рассказали в ФПИ.

Читать еще:  Что такое тип двигателя lpg

В двигателе также используется специально разработанная уникальная система турбонаддува, часть ее элементов изготовлена с помощью аддитивных технологий с использованием отечественного сырья. Также разработана отечественная электронная система управления двигателем и спроектирована современная система топливоподачи.

«Правильность выбора указанных конструкторских и технологических решений подтверждена в ходе полного комплекса стендовых испытаний. В частности, проведены круглосуточные ресурсные испытания продолжительностью более 250 часов по самолетному и вертолетному циклам работы. Последующие дефектовки подтвердили крайне низкий износ деталей на уровне допустимых износов деталей классических ДВС и лучших РПД. На основании проведенных экспериментальных исследований по утвержденным методикам Центрального института авиационного моторостроения определен межремонтный ресурс двигателя в 1000 часов и полный ресурс – 5000 часов», — отметили в ФПИ.

Также в ходе высотно-климатических испытаний на уникальном стенде УВ-3К с термобарокамерой подтверждена возможность стабильной эксплуатации РПД в широком диапазоне температур — от -63,8°С до +52°С и высот — до 10 000 метров, а также возможность поддержания взлетной мощности до высоты 7 000 метров. Двигатель способен работать на различных видах топлива, в том числе на газе, авиационном и автомобильном бензине.

Основные сферы применения перспективного двигателя— беспилотные летательные аппараты, легкомоторная авиация, робототехнические платформы различного назначения, в составе генераторов гибридных силовых установок, в качестве лодочных и автомобильных моторов.

Интерес к инновационной разработке российских ученых уже проявили ведущие предприятия авиастроительной отрасли, компании, специализирующиеся на производстве техники для активного отдыха, и представители Министерства обороны Российской Федерации.

Перспективы применения роторно-поршневых двигателей

Рубрика: Технические науки

Статья просмотрена: 2590 раз

Библиографическое описание:

Перспективы применения роторно-поршневых двигателей / О. А. Авдеюк, К. В. Приходьков, А. В. Крохалев [и др.]. — Текст : непосредственный // Молодой ученый. — 2011. — № 5 (28). — Т. 1. — С. 23-25. — URL: https://moluch.ru/archive/28/3089/ (дата обращения: 29.08.2021).

Одной из альтернатив автомобильному двигателю внутреннего сгорания является роторно-поршневой двигатель (РПД), который часто называют по имени его изобретателя — двигателем Ванкеля. Феликс Ванкель — гениальный изобретатель роторно-поршневого двигателя уже в возрасте 22 лет, в 1924 году, пришёл к идее роторно-поршневого двигателя. В 1934 году Ванкель получил свой первый патент на двигатель новой конструкции, в 1954 году он наконец-то нашёл оптимальную конфигурацию камеры сгорания РПД, которая принципиально не изменилась до нашего времени (рис. 1).

Один из первых двигателей, созданных Ванкелем ( DKM 54), имел рабочий объем 0,25 л и развивал мощность около 20 кВт при частоте вращения 17000 мин -1 . Уже в 1958 увидел свет первый автомобиль с серийным РПД.

До середины 70 годов прошлого века отечественное двигателестроение обходило стороной двигатель Ванкеля. С 1976 года волжский автомобильный завод начал серийно выпускать двигатель РПД, который устанавливался преимущественно на спец иальную технику. К сожалению, после череды финансовых кризисов 1990-2000 годов работы по РПД были заморожены.

В настоящее время только компания « Mazda » серийно выпускает автомобили с двигателем Ванкеля.

Главное принципиальное преимущество роторных двигателей — это полное отсутствие возвратно – поступательных движений любого типа, а соответственно: постоянных циклических ускорений и знакопеременных инерционных нагрузок на детали двигателя. Именно подобные нагрузки не дают традиционным поршневым двигателям значительно увеличивать обороты вращения своего вала и наращивать мощность.

Второе преимущество, неразрывно связанное с первым – это прямой и непосредственный перевод простого и непрерывного вращения ротора во вращение рабочего вала двигателя. Именно такая техническая организация кинематической схемы двигателя не требует применения дополнительных механизмов для преобразования типов движения. В традиционном же поршневом двигателе для этой цели применяется громоздкий, малоэффективный и дорогостоящий кривошипно-шатунный механизм. Как следствие, роторный двигатель имеет непрерывный крутящий момент высокого значения (как у электродвигателя). В поршневых двигателях именно кривошипно-шатунный механизм выдает на рабочий вал крутящий момент, непрерывно пульсирующий от минимального до максимально возможного значения и обратно. Именно поэтому поршневые двигатели не могут работать на малых оборотах.

Это обстоятельство чрезвычайно важно в условиях современного мегаполиса и автомобильных «пробок», когда основным эксплуатационным режимом становится холостой ход.

По сравнению с поршневым Двигателем внутреннего сгорания (ДВС) – роторный двигатель не нуждается в некоторых системах, а именно: специальном механизме газораспределения. кривошипно-шатунный механизм, и соответственно – в корпусных объемах картера для размещения этих систем, а так же систем распределения зажигания и глушения выхлопных газов. Следствием этого является гораздо большая, чем у поршневых двигателей удельная (на 1 кг. массы) мощность, а также относительная простота в обслуживании и ремонте.

Не смотря на указанные преимущества долгое время РПД не оказывали серьёзной конкуренции поршневым ДВС. Основной причиной этому являлось несовершенство уплотнения рабочей камеры, следствием чего являлся повышенный расход горюче-смазочных материалов и, соответственно, низкие экологические показатели. Так, упомянутый выше двигатель DKM 54 имел удельный расход топлива около 340 г/(кВт &#; час), что на 5-10% больше чем у поршневых двигателей тех же годов.

Кроме того, соединение ротора с выходным валом через эксцентриковый механизм, создает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя. В связи с этим возникает повышенное требование к периодической замене масла.

Тем не менее, двигатель Ванкеля на наш взгляд является на настоящий момент одной из наиболее перспективных альтернатив поршневому ДВС, имеющих шансы на серийную реализацию.

Одним из оснований для такого утверждения являются достижения фирмы Mazda, чей роторно-поршневой двигатель «Renesis» [1] признан двигателем 2003 года. Автомобиль RX-8 с этим двигателем удовлетворяет нормам токсичности Euro-4 и при более чем вдвое увеличенной номинальной частоте вращения вала двигателя моторесурс этого РПД не уступает ресурсу тронкового двигателя. Вместе с тем, резервы для дальнейшего снижения эксплутационного расхода роторно-поршневыми двигателями еще не исчерпаны. Эти резервы связаны, в значительной мере, с возможностью повышения топливной экономичности двигателя при его работе на частичных нагрузках.

Читать еще:  Что такое cdi двигатель бензиновый

Широко распространенный способ снижения расхода топлива в поршневых ДВС посредством увеличения коэффициента избытка воздуха мало приемлем для роторных двигателей. Это связано с особенностью камеры сгорания РПД. Наличие защемленных зон на периферии камеры сгорания приводит к замедлению скорости сгорания топлива даже при стехеометрических составах смеси [2]. Обеднение смеси ещё более усугубит этот процесс, и повлечёт за собой повышение неравномерности сгорания и увеличению в составе отработавших газов доли несгоревших углеводородов.

Таким образом, одним из основных путей повышения топливной экономичности РПД является устранение недогорания топлива в камеры сгорания.

Наиболее распространенным решением указанной проблемы является оптимизация мест расположения свечей зажигания, их количества и параметров системы зажигания. Так, например, за счет применения двух свечей зажигания удается примерно на 6% сократить расход топлива, и соответственно, уменьшить выбросы токсичных компонентов с отработавшими газами. В целях повышения мощности и некоторого снижения расхода топлива компания Mazda применяла даже систему зажигания с 3 свечами зажигания на двигателе R26B [3]. Дополнительная свеча воспламеняла топливовоздушную смесь в области, прилегающей к задней вершине ротора, увеличивая скорость сгорания смеси.

Другим способом уменьшить недогорание топлива является расслоение заряда. На практике расслоение заряда в камере сгорания осуществляется таким образом, чтобы в ту часть камеры, в которую пламя не может проникнуть, попадала бы, по возможности, максимально обедненная топливовоздушная смесь.

В Волгоградском государственном техническом университете в течение ряда лет ведутся исследования возможностей расслоения заряда указанным выше образом за счет применения так называемого фазированного впрыскивания топлива во впускной трубопровод, при котором начальный и конечный моменты подачи топлива форсункой согласованы с моментами открытия и закрытия впускного окна и с частотой вращения ротора. Как показывает опыт, применение фазированного впрыскивания позволяет снизить удельный расход топлива на 15%.

Одним из перспективных способов улучшения эксплуатационных характеристик ДВС является изменение рабочего объема. Особенности конструкции и кинематики ротора РПД таковы, что изменить рабочий объем можно только косвенно, например, отключением части цилиндров или пропуском части рабочих циклов. При отключении части рабочих циклов оставшиеся в работе циклы для сохранения эффективной мощности двигателя должны обладать большим индикаторным КПД, что в итоге приводит к снижению расхода топлива.

В Волгоградском государственном техническом университете были теоретически и экспериментально изучено[4] влияние отключения циклов на изменение удельного расхода топлива РПД, работающего с пропуском части рабочих циклов с системой фазированного впрыскивания топлива во впускной трубопровод. Исследования показали, что отключение циклов приводит к снижению расхода топлива лишь в некотором диапазоне нагрузочных режимов. Для испытанного двигателя ВАЗ-311 снижение удельного расхода топлива, зафиксированное в экспериментах, составило 13% .

Весьма перспективным направлением снижения токсичности в РПД является применение альтернативных топлив, в первую очередь, газообразных. Так, например, компании Mazda выпустила в серийное производство автомобиль RX – 8 Hydrogen RE , работающий и на водороде и на бензине. Использование водорода в качестве моторного топливо позволило японским инженерам полностью избавиться от содержания в выхлопных газах оксида углерода СО 2 . При этом мощность двигателя составила 80 кВт, что меньше чем у аналогичного двигателя, работающего на бензине (145 кВт). Объяснение этому в необходимости использовать сильно обедненную топливовоздушную смесь для снижения температуры сгорания, от которой, главным образом, зависит содержание в выхлопных газах оксида азота NO x . Необходимо отметить тот факт, что двигатель Ванкеля более приспособлен к работе на водороде чем поршневой двигатель, вследствие снижения риска калильного зажигания.

Одним из недостатков применения водорода в качестве моторного топлива является его высокая текучесть. При попадании в машинное масло водород окисляется и образует воду, что может вызвать появление коррозии на элементах двигателя.

Другим способом применения водорода является его использование в качестве дополнительного топлива при организации расслоения топливовоздушной смеси. При такой организации рабочего процесса основное топливо (обедненная бензовоздушная или газовоздушная смесь) подается непосредственно в камеру сгорания, а порция водорода впрыскивается в зону межэлектродного зазора свечи зажигания. Это позволяет существенно снизить запас водорода, хранимого на борту автомобиля, снизив тем самым затраты на использование газа.

Всё вышесказанное показывает, что обладая существенным потенциалом, двигатель Ванкеля является в настоящее время одной из реально существующих альтернатив традиционному поршневому двигателю.

1. Masaki Ohkubo, Seiji Tashima, Ritsuharu Shimizu, Suguru Fuse and Hiroshi Ebino Developed Technologies of the New Rotary Engine (RENESIS)//SAE Paper. 2004. – № 2004-01-1790.

2. Злотин Г. Н. Особенности рабочего процесса и пути повышения энергетической эффективности роторно-поршневых двигателей Ванкеля: монография/ Г. Н. Злотин, Е. А. Федянов.– Волгоград: Изд-во ВолгГТУ.– 2010.

3. Ritsuharu Shimizu, Tomoo Tadokoro, Toru Nakanishi, and Junichi Funamoto Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race//SAE Paper. 1992. – № 920309

4. Злотин Г.Н. Эффективность метода отключения циклов на роторно-поршневом двигателе Ванкеля [Текст] / Г.Н. Злотин, Е.Б. Морщихин, С.Н. Шумский, Е.А. Федянов – журн. «Двигателестроение» – 2006.– №4.– С. 12-14.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]