Что такое сервопривод, управление сервоприводом
Что такое сервопривод, управление сервоприводом
Сервоприводом (англ. servo) называется такой привод, точное управление которым осуществляется через отрицательную обратную связь, и позволяет таким образом добиться требуемых параметров движения рабочего органа.
Механизмы этого типа имеют датчик, отслеживающий конкретный параметр, например скорость, положение или усилие, а также блок управления (механические тяги или электронную схему), задача которого — поддерживать в автоматическом режиме необходимый параметр в процессе работы устройства, в зависимости от сигнала с датчика в каждый момент времени.
Исходное значение рабочего параметра задается посредством управления, например ручкой потенциометра или при помощи другой внешней системы, куда вводится численное значение. Так, сервопривод автоматически исполняет поставленную задачу, — опираясь на сигнал с датчика, он точно подстраивает заданный параметр, и поддерживает его устойчиво на исполнительном органе.
Многие усилители и регуляторы с отрицательной обратной связью могут быть отнесены к сервоприводам. Например, к сервоприводам относятся тормозная система и рулевое управление в автомобилях, где усилитель ручного привода обязательно имеет отрицательную обратную связь по положению.
Основные компоненты сервопривода:
В качестве привода может использоваться например пневмоцилиндр со штоком или электродвигатель с редуктором. Датчиком обратной связи может быть энкодер (датчик угла поворота) или, например, датчик Холла. Блок управления — индивидуальный инвертор, преобразователь частоты, сервоусилитель (англ. Servodrive). В блок управления может сразу входить и датчик управляющего сигнала (конвертер, вход, датчик воздействия).
В самом простом виде блок управления для электрического сервопривода строится на базе схемы сравнения значений сигналов задаваемого и сигнала, идущего с датчика обратной связи, по результатам которого на электродвигатель подается напряжение соответствующей полярности.
Если требуется плавный разгон или плавное торможение, с целью избежать динамических перегрузок электродвигателя, то реализуют более сложные схемы управления на микропроцессорах, способные позиционировать рабочий орган более точно. Так к примеру устроен привод позиционирования головок в жестких дисках.
Точное управление группами или одиночными сервоприводами достигается применением контроллеров ЧПУ, которые, кстати, могут быть построены на программируемых логических контроллерах. Сервоприводы на основе таких контроллеров достигают по мощности 15 кВт, и могут развивать крутящий момент до 50 Нм.
Сервоприводы вращательного движения бывают синхронными, с возможностью исключительно точного задания скорости вращения, угла поворота и ускорения, и асинхронными, в которых скорость очень точно поддерживается даже на предельно низких оборотах.
Синхронные сервоприводы способны весьма быстро разгоняться до номинальных оборотов. Также распространены круглые и плоские сервоприводы линейного движения, позволяющие достигать ускорений вплоть до 70 м/с².
Принципиально сервоприводы подразделяются на электрогидромеханические и электромеханические. У первых движение порождается системой поршень-цилиндр, и быстродействие получается очень высоким. Вторые используют просто электромотор с редуктором, однако быстродействие получается ниже на порядок.
Область применения сервоприводов сегодня весьма широка, благодаря возможности исключительно точного позиционирования рабочего органа.
Здесь и механические задвижки, и клапаны, и рабочие органы различных инструментов и станков, особенно с ЧПУ, включая автоматы для заводского изготовления печатных плат, и различные промышленные роботы, и многие другие точные приборы. Очень популярны высокоскоростные сервоприводы в среде авиамоделистов. Конкретно у сервомоторов примечательна характерная равномерность движения и эффективность в плане энергопотребления.
Изначально в качестве приводов сервомоторов применялись моторы трехполюсные коллекторные, где ротор содержал обмотки, а статор — постоянные магниты. Мало того, имелся коллекторно-щеточный узел. Позже количество обмоток возросло до пяти, и крутящий момент стал больше, а разгон — быстрее.
Следующая стадия совершенствования — обмотки разместили снаружи магнитов, так уменьшился вес ротора, и сократилось время разгона, однако возросла стоимость. В итоге был сделан ключевой шаг совершенствования — отказались от коллектора (в частности распространение получили приводные моторы с постоянными магнитами на роторе), и двигатель получился бесщеточным, еще более эффективным, поскольку ускорение, скорость, и крутящий момент стали теперь еще выше.
В последние годы весьма популярными становятся сервомоторы под управлением Arduino, благодаря чему открываются широкие возможности как для любительского авиа и роботостроения (квадрокоптеры и т.д.), так и для создания точных станков.
В большинстве своем обычные сервоприводы для работы использует три провода. Один из них для питания, второй сигнальный, третий — общий. На сигнальный провод подается управляющий сигнал, согласно которому требуется установить положение выходного вала. Положение вала определяется схемой с потенциометром.
Контроллер по сопротивлению и значению сигнала управления определяет, в каком направлении нужно осуществить вращение, чтобы вал пришел в требуемое положение. Выше напряжение снимаемое с потенциометра — больше крутящий момент.
Благодаря высокой энергоэффективности, возможности точного управления, и отличным рабочим характеристикам, именно сервоприводы на базе бесколлекторных моторов все чаще можно встретить как в игрушках, так и в бытовой технике (сверхмощные пылесосы с фильтрами HEPA) и в промышленном оборудовании.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Ранее на эту тему: Электропривод
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Работаем с сервоприводами
Внешний вид Fritzing Условное обозначение на схеме
Сервопривод — это механизм с электромотором с управлением. Вы можете вращать механический привод на заданный угол с заданной скоростью или усилием.
Наиболее популярны сервоприводы, которые удерживают заданный угол и сервоприводы, поддерживающие заданную скорость вращения.
Сервоприводы имеют несколько составных частей. Привод — электромотор с редуктором. Зачастую скорость вращения мотора бывает слишком большой для практического использования. Для понижения скорости используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.
Включая и выключая электромотор, можно вращать выходной вал — конечную шестерню сервопривода, к которой можно прикрепить нечто, чем мы хотим управлять — рычаг в форме круга, крестовины или перекладинки для передачи вращающего движения на рабочий орган. Для контроля положения используется датчик обратной связи — энкодер, который будет преобразовывать угол поворота обратно в электрический сигнал. Для этого часто используется потенциометр. При повороте бегунка потенциометра происходит изменение его сопротивления, пропорциональное углу поворота. Таким образом, с его помощью можно установить текущее положение механизма.
Кроме электромотора, редуктора и потенциометра в сервоприводе имеется электронная начинка, которая отвечает за приём внешнего параметра, считывание значений с потенциометра, их сравнение и включение/выключение мотора. Она-то и отвечает за поддержание отрицательной обратной связи.
К сервоприводу тянется три провода. Два из них отвечают за питание мотора и землю, третий доставляет управляющий сигнал, который используется для выставления положения устройства.
Крутящий момент и скорость поворота
Крутящий момент — векторная физическая величина, равная произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Эта характеристика показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.
Скорость сервопривода измеряется интервалом времени, который требуется рычагу сервопривода, чтобы повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё несложно вычислить скорость в более привычной величине, оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют такую единицу.
Иногда приходится искать компромисс между этими двумя характеристиками, так как если мы хотим надёжный, выдерживающий большой вес сервопривод, то мы должны быть готовы, что эта могучая установка будет медленно поворачиваться. А если мы хотим очень быстрый привод, то его будет относительно легко вывести из положения равновесия. При использовании одного и того же мотора баланс определяет конфигурация шестерней в редукторе.
Виды сервоприводов
Сервоприводы бывают аналоговые и цифровые. Различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.
Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические.
Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.
Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостаток — дороговизна.
Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. Они достаточно дорогие.
Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.
Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.
Сервоприводы с бесколлекторным мотором появились сравнительно недавно. У бесколлекторных моторов нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.
Подключение к Arduino
Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:
- красный — питание; подключается к контакту 3.3/5V или напрямую к источнику питания
- коричневый или чёрный — земля
- жёлтый или белый — сигнал; подключается к цифровому выходу Arduino
Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.
На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega — 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.
Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками/ передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.
Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°». Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».
Иногда при подключении серводвигателя не отрабатывают заданные команды или отрабатывают некорректно. Причина в том, что сервомоторы требуют достаточно большую мощность для питания, особенно в начале движения ротора. Эти резкие скачки потребляемой мощности могут сильно «просаживать» напряжение на Arduino. Может произойти даже перезагрузка платы. Если подобное происходит, вам надо добавить конденсатор (470 мкФ или больше) между рельсами GND и 5V на вашей макетке. Конденсатор выполняет роль своеобразного резервуара для электрического тока. Когда серводвигатель начинает работать, он получает остатки заряда с конденсатора и от источника питания Arduino одновременно. Длинная нога конденсатора — это позитивный контакт, она подключается к 5V. Отрицательный контакт часто маркируется символом ‘-‘.
Управляем через импульсы
Для начала попробуем управлять вручную без библиотек. Считываем показания из Serial Monitor — нужно ввести число от 0 до 9. Эти значения равномерно распределим на 180 градусов и получим 20 градусов на каждую единицу показаний.
Библиотека Servo
Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo.
Сервопривод постоянного вращения можно управлять с помощью библиотек Servo или Servo2. Отличие заключается в том, что функция Servo.write(angle) задаёт не угол, а скорость вращения привода.
Библиотека Servo позволяет осуществлять программное управление сервоприводами. Управление осуществляется следующими функциями:
- attach() — присоединяет объект к конкретному выводу платы. Возможны два варианта синтаксиса для этой функции: servo.attach(pin) и servo.attach(pin, min, max). При этом pin — номер пина, к которому присоединяют сервопривод, min и max — длины импульсов в микросекундах, отвечающих за углы поворота 0° и 180°. По умолчанию выставляются равными 544 мкс и 2400 мкс соответственно. Возвращаемого значения нет.
- write() — отдаёт команду сервоприводу принять некоторое значение параметра. Синтаксис: servo.write(angle), где angle — угол, на который должен повернуться сервопривод
- writeMicroseconds() — отдаёт команду послать на сервопривод имульс определённой длины, является низкоуровневым аналогом предыдущей команды. Синтаксис следующий: servo.writeMicroseconds(uS), где uS — длина импульса в микросекундах. Возвращаемого значения нет.
- read() — читает текущее значение угла, в котором находится сервопривод. Синтаксис: servo.read(), возвращается целое значение от 0 до 180
- attached() — проверка, была ли присоединён объект к конкретному пину. Синтаксис следующий: servo.attached(), возвращается логическая истина, если объект была присоединён к какому-либо пину, или ложь в обратном случае
- detach() — производит действие, обратное действию attach(), то есть отсоединяет объект от пина, к которому был приписан. Синтаксис: servo.detach()
В библиотеке Servo для Arduino по умолчанию выставлены следующие значения длин импульса: 544 мкс — для 0° и 2400 мкс — для 180°.
Пример подключения двух сервоприводов.
Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц, так как они используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2. Все методы библиотеки Servo2 совпадают с методами Servo.
При работе с сервоприводами на 360 градусов функции работают по другому.
Функция Arduino | Сервопривод 180° | Сервопривод 360° |
---|---|---|
Servo.write(0) | Крайне левое положение | Полный ход в одном направлении |
Servo.write(90) | Среднее положение | Остановка сервопривода |
Servo.write(180) | Крайне правое положение | Полный ход в обратном направлении |
Sweep
Скетч File | Examples | Servo | Sweep постоянно поворачивает насадку на 180 градусов и возвращает её обратно. В примере используется встроенная библиотека Servo.
Общая схема — красный провод идёт к питанию 5V, чёрный или коричневый идёт к GND, а жёлтый или белый к выводу платы (в нашем примере вывод 9).
Скетч File | Examples | Servo | Knob управляет сервоприводом при помощи потенциометра. В примере используется встроенная библиотека Servo.
Общая схема: у сервопривода — красный провод идёт к питанию 5V, чёрный или коричневый идёт к GND, а жёлтый или белый к выводу платы (в нашем примере вывод 9). У потенциометра средняя ножка соединяется с аналоговым выходом A0, остальные к питанию и земле.
Случайные повороты
Будем поворачивать серводвигатель на случайную величину. Практического смысла немного, но для демонстрации подойдёт.
Модуль двигателя, серво, шагового двигателя V2
Модуль Motor/Stepper/Servo Shield для Arduino v2.0 с I2C интерфейсом.
Плата представляет собой универсальный драйвер для управления DC моторами(до 4-х шт), шаговыми двигателями (до 2-х шт) или серво (до 2-х шт) на микросхемах TB6612 вместо широко. Перейти к полному описанию
Артикул: 25183410
- Описание
- Вопрос-ответ (6)
- Гарантии и возврат
- Наличие
Модуль Motor/Stepper/Servo Shield для Arduino v2.0 с I2C интерфейсом.
Плата представляет собой универсальный драйвер для управления DC моторами(до 4-х шт), шаговыми двигателями (до 2-х шт) или серво (до 2-х шт) на микросхемах TB6612 вместо широко используемых L293D. MOSFET-драйвер TB6612 имеет меньшее собственное падение напряжение, чем L293D, что позволяет более эффективно использовать заряд аккумулятора вашего проекта.Генерируемый ШИМ для DC моторов, — разрядностью 8 бит.Управление шаговыми двигателями (униполярными или биполярными) с поддержкой микро шага. Серво управляются при помощи выделенного таймера высокого разрешения, что позволяет избежать их дрожания.При включении платы все приводы отключаются по умолчанию.
Благодаря двух-сторонним контактам, формата Arduino 1.0 максимально возможное число соединяемых в одной системе модулей — 32 штуки, что позволит управлять 64 шаговыми двигателями или 128 двигателями постоянного тока.Выбор адреса платы I2C осуществляется перемычками (7-бит, адреса 0x60. 0x80). Макетное поле на плате позволяет при желании доработать схему или разместить на плате компоненты своего проекта.
Характеристики:
- Управление: I2C
- TTL управления: 3.3V или 5V(устанавливается перемычкой на модуле)
- Ток на каждый драйвер: 1,2А(3А пиковый)
- Напряжение:5-12V
- Размеры — 68*52*20мм
- Вес:25г
- Защита: от перегрева, внутренние защитные диоды.
Попробовать еще раз
Наш магазин работает в соответствии с Законом РФ «О защите прав потребителей».
В соответствие с п. 4 ст. 26.1 ФЗ «О защите прав потребителей» и п. 21 Постановления Правительства РФ «Об утверждении правил продажи товаров дистанционным способом» потребитель (покупатель) имеет право отказаться от товара (в том числе и надлежащего качества) в любое время до его передачи, а после передачи – в течение 7 дней. При этом, обмен товара надлежащего качества возможен только в случае, если:
- товар не включен в перечень товаров надлежащего качества, не подлежащих возврату утвержденный Постановлением Правительства РФ №55 от 19.01.1998 г.
- товар не был в употреблении
- сохранены фабричные ярлыки, гарантийные талоны, техническая документация, комплектующие детали
- сохранена упаковка товара
- в наличии документы, подтверждающие факт и условия покупки указанного товара (Ст. 25 Закона «О защите прав потребителей»).
В случае отказа от товара возврату подлежит уплаченная сумма, за исключением расходов на доставку товара, а также других расходов интернет-магазина, подлежащих компенсации за счет Покупателя (Ст. 26.1 Закона «О защите прав потребителей»).
Возвратом и обменом товара занимается тот филиал, в котором была совершена покупка
Сервоприводы. Виды и устройство. Характеристики и применение
Сервоприводы и механизмы оснащены датчиком, который отслеживает определенный параметр, например усилие, положение или скорость, а также управляющий блок в виде электронного устройства. Задачей этого устройства является поддержание необходимых параметров в автоматическом режиме во время функционирования устройства, в зависимости от вида поступающего сигнала от датчика в определенные периоды времени.
Виды сервоприводов
При необходимости создания управления несколькими группами сервоприводов используют контроллеры с ЧПУ, которые собраны на схемах программируемых логических контроллеров. Такие сервоприводы способны обеспечить крутящий момент 50 Н*м, мощностью до 15 киловатт.
Синхронные способны задать скорость вращения электродвигателя с большой точностью, так же как ускорение и угол поворота. Синхронные виды приводов могут быстро достигать номинальной скорости вращения.
Асинхронные способны точно выдерживать скорость даже на очень низких оборотах.
Сервоприводы принципиально разделяют на электромеханические и электрогидромеханические . Электромеханические приводы состоят из редуктора и электродвигателя. Но их быстродействие оказывается намного меньше. В электрогидромеханических приводах движение создается путем движения поршня в цилиндре, вследствие чего быстродействие оказывается на очень высоком уровне.
Устройство и работа
От обычного электродвигателя сервопривод отличается тем, что можно задать точное положение вала в градусах. Сервоприводы – это любые механические приводы, которые включают в себя датчик некоторого параметра и блок управления, который способен автоматически поддерживать требуемые параметры, соответствующие определенным внешним значениям.
1 — Шестерни редуктора
2 — Выходной вал
3 — Подшипник
4 — Нижняя втулка
5 — Потенциометр
6 — Плата управления
7 — Винт корпуса
8 — Электродвигатель постоянного тока
9 — Шестерня электродвигателя
Для преобразования электрической энергии в механическое движение, необходим электродвигатель. Приводом является редуктор с электродвигателем. Редуктор требуется для снижения скорости двигателя, так как скорость слишком большая для применения. Редуктор состоит из корпуса, в котором расположены валы с шестернями, способными преобразовывать и передавать крутящий момент.
Путем запуска и останова электродвигателя можно приводить в движение выходной вал редуктора, который связан с шестерней сервопривода. К валу можно присоединять устройство или механизм, которым требуется управлять. Кроме этого для контроля положения вала требуется наличие датчика обратной связи. Этот датчик может преобразовать угол поворота снова в сигнал электрического тока.
Такой датчик получил название энкодера. В качестве энкодера может применяться потенциометр. Если бегунок потенциометра поворачивать, то будет изменяться его сопротивление. Значение этого сопротивления прямо пропорционально зависит от угла поворота потенциометра. Таким образом, есть возможность добиться установки определенного положения механизма.
Кроме выше названного потенциометра, редуктора и электродвигателя, сервоприводы оснащены электронной платой, которая обрабатывает поступающий сигнал внешнего значения параметра от потенциометра, сравнивает, и в соответствии с результатом сравнения запускает или останавливает электродвигатель. Другими словами эта электронная начинка отвечает за поддержку отрицательной обратной связи.
Подключение сервопривода осуществляется тремя проводниками, два из которых подают питание напряжением электродвигателя, а по третьему проводнику поступает сигнал управления, с помощью которого выполняется установка положения вала двигателя.
Кроме электродвигателя, играть роль привода может и другой механизм, например пневматический цилиндр со штоком. В качестве датчика обратной связи применяют также датчики поворота угла, либо датчик Холла. Управляющий блок является сервоусилителем, частотным преобразователем, индивидуальным инвертором. Он может содержать также и датчик сигнала управления.
При необходимости создания плавного торможения или разгона для предотвращения чрезмерных динамических нагрузок двигателя, выполняют схемы более сложных микроконтроллеров управления, которые могут контролировать позицию рабочего элемента намного точнее. Подобным образом выполнено устройство привода установки позиции головок в компьютерных жестких дисках.
Характеристики сервоприводов
Основные параметры, которые характеризуют сервоприводы:
- Усилие на валу. Этот параметр является крутящим моментом. Это наиболее важный параметр сервопривода. В паспортных данных чаще всего указывается несколько значений момента для разных величин напряжения.
- Скорость поворота также является важной характеристикой. Она указывается в эквиваленте времени, необходимом для изменения позиции выходного вала привода на 60 градусов. Этот параметр также могут указывать для нескольких значений напряжения.
- Тип сервоприводов бывает аналоговый или цифровой.
- Питание. Основная часть сервоприводов функционирует на напряжении 4,8-7,2 вольта. Питание подается чаще всего по трем проводникам: белый – сигнал управления, красный – напряжение работы, черный – общий провод.
- Угол поворота – это наибольший угол, на который выходной вал способен повернуться. Чаще всего этот параметр равен 180 или 360 градусов.
- Постоянного вращения. При необходимости обычный сервопривод можно модернизировать для постоянного вращения.
- Материал изготовления редуктора сервоприводов бывает различным: карбон, металл, пластик, либо комбинированный состав. Шестерни, выполненные из пластика, не выдерживают ударных нагрузок, однако обладают высокой износостойкостью. Карбоновые шестерни намного прочнее пластмассовых, но имеют высокую стоимость. Шестерни из металла способны выдержать значительные нагрузки, падения, но имеют низкую износостойкость. Выходной вал редуктора устанавливают по-разному на разных моделях: на втулках скольжения, либо на шариковых подшипниках.
Преимущества
- Легкость и простота установки конструкции.
- Безотказность и надежность, что важно для ответственных устройств.
- Не создают шума при эксплуатации.
- Точность и плавность передвижений достигается даже на малых скоростях. В зависимости от поставленной задачи разрешающая способность может настраиваться работником.
Недостатки
- Сложность в настройке.
- Повышенная стоимость.
Применение
Сервоприводы в настоящее время используются достаточно широко. Так, например, они применяются в различных точных приборах, промышленных роботах, автоматах по производству печатных плат, станках с программным управлением, различные клапаны и задвижки.
Наиболее популярными стали быстродействующие приводы в авиамодельном деле. Серводвигатели имеют достоинство в эффективности расхода электрической энергии, а также равномерного движения.
В начале появления серводвигателей использовались коллекторные трехполюсные моторы с обмотками на роторе, и с постоянными магнитами на статоре. Кроме этого, в конструкции двигателя был узел с коллектором и щетками. Далее, по мере технического прогресса число обмоток двигателя увеличилось до пяти, а момент вращения возрос, так же как и скорость разгона.
Следующим этапом развития серводвигателей было расположение обмоток снаружи магнитов. Этим снизили массу ротора, уменьшили время разгона. При этом стоимость двигателя увеличилась. В результате дальнейшего проектирования серводвигателей было решено отказаться от наличия коллектора в устройстве двигателя. Стали применяться двигатели с постоянными магнитами ротора. Мотор стал без щеток, эффективность его возросла вследствие увеличения крутящего момента, скорости и ускорения.
В последнее время наиболее популярными стали сервомоторы, работающие от программируемого контроллера (Ардуино). Вследствие этого открылись большие возможности для проектирования точных станков, роботостроения, авиастроения (квадрокоптеры).
Так как приводы с моторами без коллекторов обладают высокими функциональными характеристиками, точным управлением, повышенной эффективностью, они часто применяются в промышленном оборудовании, бытовой технике (мощные пылесосы с фильтрами), и даже в детских игрушках.
Сервопривод отопления
По сравнению с механической регулировкой системы отопления, электрические сервоприводы являются наиболее совершенными и прогрессивными техническими устройствами, обеспечивающими поддержание параметров отопления помещений.
1 — Блок питания
2 — Комнатные термостаты
3 — Коммутационный блок
4 — Серводвигатели
5 — Подающий коллектор
6 — Обход
7 — Водяной теплый пол
8 — Обратный коллектор
9 — Датчик температуры воды
10 — Циркулярный насос
11 — Шаровый клапан
12 — Регулировочный клапан
13 — Двухходовой термостатический клапан
Привод системы отопления функционирует совместно с термостатом, установленным на стену. Кран с электрическим приводом монтируется на трубе подачи теплоносителя, перед коллектором теплого водяного пола. Далее выполняется подключение питания 220 вольт и настройка терморегулятора рабочего режима.
Система управления оснащается двумя датчиками. Один из них расположен в полу, другой в помещении. Датчики передают сигналы на термостат, управляющий сервоприводом, который соединен с краном. Повысить точность регулировки можно путем установки дополнительного прибора снаружи помещения, так как условия климата непрерывно изменяются, и оказывают влияние на температуру в комнате.
Привод механически соединен с клапаном для его управления. Клапаны могут быть двух- и трехходовыми. Двухходовой клапан может изменять температуру воды в системе. Трехходовой клапан способен поддерживать температуру неизменной, однако изменяет потребление горячей воды, которая подается в контуры. В устройстве трехходового клапана имеется два входа для горячей воды (трубы подачи) и выход обратной воды, через который подается смешанная вода с заданной температурой.
Смешивание воды происходит с помощью клапана. При этом осуществляется регулировка подачи теплоносителя в коллекторы. При открывании одного входа, другой начинает закрываться, а расход воды на выходе не изменяется.
Сервоприводы багажника
В настоящее время современные автомобили чаще всего стали производит с функцией автоматического открывания багажника. Для такой цели применяют рассмотренную нами конструкцию сервопривода. Автопроизводители используют два метода для оснащения такой функцией автомобиля.
Конечно, пневмопривод багажника более надежен, однако его стоимость достаточно высока, поэтому в автомобилях такой привод не нашел применения.
Электрический привод выполняется с разными способами управления:
- Рукояткой на крышке багажника.
- Кнопкой на панели двери водителя.
- С пульта сигнализации.
Открывать багажник вручную не всегда бывает удобным. Например, зимой замок имеет свойство замерзать. Сервопривод дополнительно выполняет функцию защиты автомобиля от чужого проникновения, так как совмещен с устройством замка.
Такие приводы багажника используются на некоторых импортных автомобилях, однако, можно установить такой механизм и на отечественных машинах, было бы желание.
Существуют приводы багажника с магнитными пластинами, однако они не нашли применения, так как их устройство достаточно сложное.
Наиболее приемлемыми по цене являются сервоприводы багажника, которые выполняют только открывание. Функция закрывания для них недоступна. Также можно выбрать конструкцию модели привода, имеющего инерционный механизм. Он играет роль блокировки при появлении препятствия при движении багажника.
Дорогостоящие модели сервоприводов включают в себя механизм подъема и опускания багажника, доводчика механизма запирания, датчиков и контроллера. Обычно их на автомобилях устанавливают на заводе, однако простые конструкции вполне можно монтировать самостоятельно.