Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СИНХРОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

СИНХРОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Синхронные двигатели – это машины переменного тока, преобразующие электрическую энергию в механическое вращение приводного вала.

Их особенность проявляется в синхронном взаимодействии вращающейся ЭДС неподвижного статора с электромагнитным полем подвижного ротора.

Для понимания принципа этого взаимодействия важно ознакомиться с существующими разновидностями синхронных агрегатов и их устройством.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИНХРОННОГО ДВИГАТЕЛЯ

При рассмотрении устройства двигателей синхронного типа выделяются следующие основные части:

  • литой корпус агрегата;
  • неподвижный статор с комплектом обмоток;
  • подвижный ротор с приводным валом;
  • контактно-щеточный узел.

Статор или якорь электродвигателя набран из листов электротехнической стали, позволяющей усилить создаваемые в нем магнитные потоки.

В специальных пазах размещаются рабочие обмотки, создающие вращающееся магнитное поле. Кроме того, ротор электродвигателя оснащается обмоткой возбуждения, обеспечивающей электромагнитное взаимодействие с вращающимся полем статора.

При подаче напряжения в подвижном узле формируется собственное э/м поле, приводящее к вращению ротора с приводным валом. Контактные кольца с комплектом щеток необходимы для подачи питания на его обмотки.

Роторные обмотки имеют два исполнения. Первое представлено образцами с явно выраженными полюсами, а второе имеет катушки распределенного типа (в этом варианте они укладываются в пазы ротора). Помимо этого описываемый узел может выполняться в виде короткозамкнутого витка (так называемая «беличья клетка»).

ВИДЫ И ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ СИНХРОННОГО ТИПА

По числу обмоток, используемых для создания вращающегося поля статора, все известные модели синхронных двигателей делятся на:

  • однофазные;
  • трехфазные устройства.

Последние предназначаются для работы в условиях повышенных напряжений и нагрузок, что характерно для условий промышленного производства. Их полезная мощность порой достигает сотен кВт.

В отличие от них однофазные электродвигатели могут подключаться к бытовым электрическим сетям переменного тока частотой 50 Гц и напряжением 220 Вольт. Как правило, эти устройства имеют мощность в пределах от 5 Вт до 10 кВт.

По рабочей эффективности они существенно уступают своим трехфазным аналогам. Однофазная схема включения заметно снижает КПД двигателя и величину его пускового момента. Вместе с тем агрегаты этого типа способны выдерживать большие перегрузки на валу.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ СИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

В сравнении с другими образцами машин переменного тока синхронные имеют следующие бесспорные преимущества:

  • постоянство скорости вращения приводного вала при нагрузке, меняющейся в широких пределах;
  • высокие показатели кпд и передачи полезной мощности в нагрузку;
  • сравнительно низкий коэффициент реактивной составляющей;
  • возможность длительной работы в режиме перегрузки;
  • меньшая зависимость от колебаний напряжения в питающей сети.

Указанные преимущества и определяют области их применения: мощные вентиляционные системы, конвейерные линии, компрессоры и прокатные станы.

К числу существенных недостатков электродвигателей синхронного типа относят:

  • сложность конструкции и сравнительно высокая стоимость;
  • технические сложности с запуском электродвигателя в работу;
  • потребность в дополнительном источнике постоянного напряжения;
  • сложность управления основными параметрами двигателя (скоростью вращения и моментом на валу).

Все перечисленные недостатки синхронных машин переменного тока устраняются за счет использования дополнительных систем плавного запуска. Хорошего результата удается добиться, если для управления работой двигателя используются электронные устройства (частотные преобразователи).

СПОСОБЫ И УСТРОЙСТВА ПЛАВНОГО ПУСКА И УПРАВЛЕНИЯ

Добиться плавного пуска удается за счет использования дополнительного двигателя или же посредством асинхронного запуска.

Первый случай не требует пояснений, а во втором используется принцип асинхронности вращения э/м полей, приводящих к эффекту скольжения на начальном этапе работы. У каждого из этих вариантов имеются свои достоинства и недостатки.

Для эффективного управления режимами работы синхронного двигателя используется зависимость частоты вращения ротора от питающего напряжения.

При заданном значении токовой составляющей такое управление сводится к изменению мощности на валу. Реализовать его удается различными способами, но наиболее эффективными считаются электронные устройства (преобразователи).

Для управления режимами работы применяются современные полупроводниковые компоненты. К последним относятся транзисторы, тиристоры и симисторы.

С помощью этих быстродействующих элементов удается менять величину мощности в нагрузке, используя принципы широтно-импульсного или фазоимпульсного регулирования.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Синхронная машина

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Содержание

  • 1 Устройство
  • 2 Принцип действия
    • 2.1 Генераторный режим
    • 2.2 Двигательный режим
  • 3 Разновидности синхронных машин
    • 3.1 Бесконтактная синхронная машина
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки

Устройство [ править | править код ]

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него зазором роторе находится индуктор — таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой не получается с помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока [1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При не явнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из электротехнической стали.

Принцип действия [ править | править код ]

Как всякая электромашина, синхронная машина может работать в режимах двигателя и генератора.

Генераторный режим [ править | править код ]

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочерёдно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространённом случае применения трёхфазной распределенной обмотки якоря в каждой из фаз, смещённых друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трёхфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Читать еще:  Что такое электронное оборудование двигателя

Частота индуцируемой ЭДС f [Гц] связана с частотой вращения ротора n [об/мин] соотношением:

f = n ⋅ p 60 <60>>> ,

где p — число пар полюсов.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трёхфазным выпрямителям — на тепловозах (например, ТЭП70, 2ТЭ116), автомобилях, летательных аппаратах. Это сделано из-за намного больших надёжности и межремонтного ресурса синхронных машин. [2] [3]

Двигательный режим [ править | править код ]

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щётка-кольцо), в маломощных, к примеру, в двигателях жёстких дисков — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники).

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора: если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим [4] , при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей «раскачивание» ротора при синхронизации. После выхода на скорость, близкую к номинальной (> 95% — так называемая подсинхронная скорость), индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель либо частотно-регулируемый пуск, также частотное регулирование применяют на всех типах СД в рабочем режиме — например, на тяговых двигателях скоростного электропоезда TGV. Двигатели старых электропроигрывателей требовали ручного пуска — прокрутки пластинки рукой, позже в проигрывателях стали применяться асинхронные двигатели.

Иногда на валу крупных машин ставят небольшой генератор (постоянного тока или переменного тока с выпрямлением), т.н. возбудитель, который питает обмотку возбуждения. В некоторых случаях (например, на тепловозах) возбудитель установлен отдельно и приводится через повышающий редуктор. [5]

Частота вращения ротора n [об/мин] остаётся неизменной, жёстко связанной с частотой сети f [Гц] соотношением:

n = 60 f p

>> ,

где p — число пар полюсов статора, в зависимости от нагрузки машины меняется лишь угол нагрузки (угол тета) — электрический угол отставания или опережения поля возбуждения по отношению к полю якоря. При угле нагрузки более 90 электрических градусов машина выпадает из синхронизма — останавливается, если вал перегружен тормозным моментом, либо уходит на повышенные обороты, если машина работает в режиме генератора и недогружена электрической нагрузкой.

Синхронные двигатели при изменении возбуждения меняют косинус фи с ёмкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт (воздуходувки, водоперекачивающие и нефтеперекачивающие насосы), к примеру, типа СТД, при меньших мощностях обычно применяется более простой (и надёжный), в том числе в запуске, асинхронный двигатель с короткозамкнутым ротором.

Разновидности синхронных машин [ править | править код ]

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения, 50 — 600 мин –1 ).

Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора — 6000 (редко), 3000, 1500 об/мин.

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает индуктивную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы.

Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Сельсин — маломощная синхронная машина, используемая как датчик угла поворота либо в паре с другим сельсином для передачи угла поворота без прямой механической связи.

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

Бесконтактная синхронная машина [ править | править код ]

В классической синхронной машине имеется слабое место — контактные кольца со щётками, изнашивающиеся быстрее других частей машины из-за электроэрозии и простого механического износа. Кроме того, искрение щёток может стать причиной взрыва. Поэтому сначала в авиации, а позже и в других областях (в частности, на автономных дизель-генераторах) получили распространение бесконтактные трёхмашинные синхронные генераторы. В корпусе такого агрегата размещены три машины — подвозбудитель, возбудитель и генератор, их роторы вращаются на общем валу. Подвозбудитель — синхронный генератор с возбуждением от вращающихся на роторе постоянных магнитов, его напряжение подаётся в блок управления генератором, где выпрямляется, регулируется и подаётся в обмотку статора возбудителя. Поле статора наводит в обмотке возбудителя ток, выпрямляемый размещённым на валу блоком вращающихся выпрямителей (БВВ) и идущий в обмотку возбуждения генератора. Генератор уже вырабатывает ток, идущий к потребителям.

Читать еще:  Что такое шунтовой двигатель

Такая схема обеспечивает как отсутствие иных механических частей в двигателе, кроме подшипников, так и автономность работы генератора — всё время, пока генератор вращается, подвозбудитель даёт напряжение, которое может быть использовано для питания цепей управления генератором.

Синхронные электродвигатели. Работа и применение. Особенности

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.

Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:
  • Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
  • Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Недостатками являются следующие отрицательные моменты:
  • При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
  • Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
  • Запуск двигателя происходит по сложной схеме.
  • Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
  • Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
  • Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы

Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.

Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.

Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.

Сфера применения

Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.

Читать еще:  Что такое агр двигатель

Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.

В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.

Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.

Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.

Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.

Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.

Энергоэффективный синхронный двигатель с постоянными магнитами Dyneo

Dyneo это новая серия синхронных двигателей с постоянными магнитами, обладающих высоким КПД, повышенными скоростями вращения и относительно широким диапазоном мощностей.

Серия представлена моделями: LSRPM – c алюминиевым корпусом с IP55 для общепромышленных применений; PLSRPM – со стальным корпусом с IP23 для применений, где требуется высокая удельная мощность.

За счет использования постоянных магнитов в роторе, в нем отсутствуют потери, что влечет к увеличению КПД на 2-4 пункта по сравнению со стандартным асинхронным двигателем аналогичной мощности. При этом, в отличие от асинхронного двигателя, КПД остается постоянным на всем диапазоне регулирования скорости.

Поскольку данная серия предназначена для использования в составе частотно-регулируемого электропривода, инженерами LeroySomer проведена большая работа по адаптации двигателей Dyneo к использованию с преобразователями частоты Emerson серий Unidrive M, Powerdrive MD2 и Powerdrive FX. Благодаря этому достигается превосходная точность регулирования скорости и момента приводного двигателя, в сочетании с высочайшей надежностью.

Основные параметры двигателей Dyneo:

LSRPMPLSRPM
Номинальная мощность6,9…350 кВт325…390 кВт
Номинальное напряжение400В/50Гц
Номинальная скорость вращения750, 900, 1500, 1800, 2400, 3000, 3600, 4500 и 5500 об/мин3600 об/мин
Номинальный момент12…1393 Нм862…1035 Нм
Типоразмер(высота оси вращения, мм)90…315315
Класс изоляцииF(155°С)
Степень защитыIP55IP23
Метод охлажденияIC 411, IC410 и IC416AIC 411 и IC416A
Монтажное исполнениеIM1001, IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201, IM9101
Датчик скоростиАбсолютный/инкрементальный энкодер
Дополнительные элементыКомплектная поставка с редуктором, ATEX комплектация, электромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, усиленная изоляция обмоток статора, модификация размеров фланца и диаметра выходного вала, усиленные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитyые покрытия корпуса двигателя, и др.
Температуры окружающей среды и высота над уровнем моряот -16°С до +40°С и до 1000 м
ЦветRAL3005(вишневый)RAL3005(вишневый)

Основные технические данные двигателей Dyneo:

Техническая документация

  • LSRPM (Technical catalogue LSRPM, Unidrive M — 5034 EN — 2014.05c).pdf
  • LSRPM, PLSRPM (Installation and maintenance — 4155 EN — 2012.05e).pdf
  • LSRPM (Brochure Dyneo Drive Systems — 4979 EN — 2013.10b).pdf
  • LSRPM (Technical Catalogue LSRPM, PLSRPM PM sync motors — 5006 EN-2013.11b).pdf

Dyneo это новая серия синхронных двигателей с постоянными магнитами, обладающих высоким КПД, повышенными скоростями вращения и относительно широким диапазоном мощностей.

Серия представлена моделями: LSRPM – c алюминиевым корпусом с IP55 для общепромышленных применений; PLSRPM – со стальным корпусом с IP23 для применений, где требуется высокая удельная мощность.

За счет использования постоянных магнитов в роторе, в нем отсутствуют потери, что влечет к увеличению КПД на 2-4 пункта по сравнению со стандартным асинхронным двигателем аналогичной мощности. При этом, в отличие от асинхронного двигателя, КПД остается постоянным на всем диапазоне регулирования скорости.

Поскольку данная серия предназначена для использования в составе частотно-регулируемого электропривода, инженерами LeroySomer проведена большая работа по адаптации двигателей Dyneo к использованию с преобразователями частоты Emerson серий Unidrive M, Powerdrive MD2 и Powerdrive FX. Благодаря этому достигается превосходная точность регулирования скорости и момента приводного двигателя, в сочетании с высочайшей надежностью.

Основные параметры двигателей Dyneo:

LSRPMPLSRPM
Номинальная мощность6,9…350 кВт325…390 кВт
Номинальное напряжение400В/50Гц
Номинальная скорость вращения750, 900, 1500, 1800, 2400, 3000, 3600, 4500 и 5500 об/мин3600 об/мин
Номинальный момент12…1393 Нм862…1035 Нм
Типоразмер(высота оси вращения, мм)90…315315
Класс изоляцииF(155°С)
Степень защитыIP55IP23
Метод охлажденияIC 411, IC410 и IC416AIC 411 и IC416A
Монтажное исполнениеIM1001, IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201, IM9101
Датчик скоростиАбсолютный/инкрементальный энкодер
Дополнительные элементыКомплектная поставка с редуктором, ATEX комплектация, электромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, усиленная изоляция обмоток статора, модификация размеров фланца и диаметра выходного вала, усиленные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитyые покрытия корпуса двигателя, и др.
Температуры окружающей среды и высота над уровнем моряот -16°С до +40°С и до 1000 м
ЦветRAL3005(вишневый)RAL3005(вишневый)

Основные технические данные двигателей Dyneo:

  • Помощь в подборе оборудования и консультация по его применению
  • Широчайший спектр электрооборудования и автоматики
  • Гарантийное и послегарантийное обслуживание
  • Гибкая ценовая политика и выгодные условия оплаты
Ссылка на основную публикацию
Adblock
detector