Что такое трансмиссия двигателя
Трансмиссия
Трансми́ссия (силовая передача) — (от лат. transmissio — пересылка, передача) в машиностроении все механизмы, соединяющие двигатель с тем, что должно двигаться (например, с колесами в автомобиле), а также всё, что обеспечивает работу этих механизмов.
Содержание
- 1 Состав
- 2 Основные требования
- 3 Классификация трансмиссий
- 3.1 Механические трансмиссии
- 3.2 Гидромеханические трансмиссии
- 3.3 Гидравлические трансмиссии
- 3.4 Электромеханические трансмиссии
- 3.5 Автоматические трансмиссии
- 4 См. также
- 5 Литература
- 6 Ссылки
Состав [ править | править код ]
В состав трансмиссии автомобиля в общем случае входят:
Также, опционально в трансмиссии автомобиля могут быть:
В состав трансмиссии гусеничных машин в общем случае входят:
Основные требования [ править | править код ]
К трансмиссиям транспортных средств предъявляются следующие требования:
- обеспечение высоких тяговых качеств и скорости машины при прямолинейном движении и повороте;
- простота и лёгкость управления, исключающие быструю утомляемость водителя;
- высокая надёжность работы в течение длительного периода эксплуатации;
- малые масса и габаритные размеры агрегатов;
- простота (технологичность) в производстве, удобство в обслуживании при эксплуатации и ремонте;
- высокий КПД;
- в машинах высокого класса добавляется требование бесшумности.
Классификация трансмиссий [ править | править код ]
По способу передачи и трансформирования момента трансмиссии делятся на механические, гидромеханические и электромеханические.
Механические трансмиссии [ править | править код ]
В механических трансмиссиях мощность на всех режимах работы мотора передаётся только посредством различных механических передач вращательного движения: зубчатых передач, цепных передач, планетарных передач, фрикционных муфт, валов, шарниров, и т. п. Механические трансмиссии обладают наивысшим КПД среди прочих, наименьшей массой, наиболее просты в производстве.
Термин «механическая трансмиссия» в речевом обиходе может иметь двойное толкование. Ввиду того, при рассмотрении конструкции автомобиля в контексте оценки его потребительских или эксплуатационных качеств одним из наиболее важных параметров является тип коробки передач, под механической трансмиссией машины нередко понимается трансмиссия именно с механической коробкой передач — то есть, коробкой, в которой отсутствует какая-либо вспомогательная гидравлика или электроника, а переключение передач осуществляется водителем. А вся совокупность элементов, передающих мощность от двигателя к колёсам, в таком случае называется просто «трансмиссия» без дополнительного определения «механическая». То есть, тип и конструкция коробки передач оказывается решающим для классификации трансмиссии конкретной машины. Антиподом механической трансмиссии при использовании критерия оценки по типу коробки передач является автоматическая трансмиссия (см.ниже). Эта классификация на два класса широко распространена не только в разговорах, но и в технической литературе, посвящённой автомобилям, и ввиду этого имеет право на существование. Но при этом она вносит неопределённость в такие вопросы, как например, к какому типу относить некоторые танковые трансмиссии с планетарными неавтоматическими коробками передач (танк Т-72, танк Чифтен, танк Т-64) в которых мощность от двигателя к гусеницам передаётся только через механические передачи, но сама КП не является механической ни по конструкции, ни по общепринятому смыслу определения «механический».
Гидромеханические трансмиссии [ править | править код ]
В гидромеханических трансмиссиях по крайней мере на части режимов работы мотора мощность передаётся посредством кинетической энергии потока жидкости. Подобное усложнение трансмиссии обусловлено разными конструктивными целями, например, улучшением приспособляемости транспортного средства под различные условия движения, или устранение жёсткой связи между двигателем и движителем для снижения ударных нагрузок, фильтрации крутильных колебаний, облегчения управления. Гидромеханические трансмиссии применяются только на транспортных средствах и не применяются на технологических машинах (станках). В роли преобразователя потока мощности вращением в поток жидкости и обратно обычно используется гидротрансформатор (как в виде комплексной гидропередачи, так и без блокировки), реже — гидромуфта. Зачастую в составе гидромеханической трансмиссии будет присутствовать автоматическая коробка передач. В современных механизмах поворота гусеничных машин именно для целей поворота могут применяться гидрообъёмные насос-машины, позволяющие на некоторых режимах движения пропускать через себя практически всю передаваемую мощность.
При использовании комплексной гидропередачи гидромеханические трансмиссии имеют КПД близкий к КПД механической трансмиссии. В случае использования гидротрансформатора без блокировки или гидромуфту КПД может быть на уровне 0,8. Широко применяются на различных наземных транспортных средствах, от легковых машин до грузовых локомотивов.
Гидравлические трансмиссии [ править | править код ]
В гидравлической трансмиссии вся мощность на всех режимах работы передаётся посредством различных объёмных насос-машин, в первую очередь — аксиально-плунжерных гидромашин. Механические передачи мощности вращением здесь играют вспомогательную роль или даже могут отсутствовать. Достоинства такой трансмиссии — малые габариты машин, малая масса и отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, что позволяет разносить их на значительные расстояния и придавать большое число степеней свободы. Недостаток гидрообъёмной передачи — значительное давление в гидролинии и высокие требования к чистоте рабочей жидкости.
Гидростатическая передача используется на дорожно-строительных машинах (особенно катках — из-за необходимости обеспечивать очень большое передаточное число, а также зачастую приводить вальцы с торца, построение механической передачи затруднено), как вспомогательная — на тепловозах, авиационной технике (благодаря малой массе и возможности размещать мотор далеко от насоса), металлорежущих станках.
Электромеханические трансмиссии [ править | править код ]
Электромеханическая трансмиссия состоит из электрического генератора, тягового электродвигателя (или нескольких), электрической системы управления, соединительных кабелей. Основным достоинством электромеханических трансмиссий является обеспечение наиболее широкого диапазона автоматического изменения крутящего момента и силы тяги, а также отсутствие жёсткой кинематической связи между агрегатами электротрансмиссии, что позволяет создать различные компоновочные схемы.
Недостатком, препятствующим широкому распространению электрических трансмиссий, являются относительно большие габариты, масса и стоимость (особенно если используются электрические машины постоянного тока), сниженный КПД (по сравнению с чисто механической). Однако, с развитием электротехнической промышленности, массовым распространением асинхронного, синхронного, вентильного, индукторного и др. видов электрического привода, открываются новые возможности для электромеханических трансмиссий.
Такие трансмиссии применяются в тепловозах, карьерных самосвалах, некоторых морских судах, тракторах, самоходных механизмах, военной технике — на танках ЭКВ (СССР) и немецких военных машинах («Фердинанд» и «Мышонок»), автобусах (которые с таким видом трансмиссии правильнее называются теплоэлектробус, например ЗИС-154).
Автоматические трансмиссии [ править | править код ]
Под таковой в контексте применения на транспортных средствах понимается трансмиссия, способная автоматически изменять общее передаточное отношение потока передаваемой вращением мощности. В случае ступенчатого изменения передаточного отношения основным исполнительным узлом автоматической трансмиссии является автоматическая КП. В случае бесступенчатого — вариатор. Автоматическая трансмиссия может быть как механической, так и гидромеханической. Во втором случае в составе гидромеханической автоматической трансмиссии обязательно присутствует гидротрансформатор.
Трансмиссия автомобиля
Установить ДВС под капот автомобиля, присоединить к коленчатому валу устройство сцепления с колёсами и поехать не получится – двигатель просто заглохнет. Почему? Двигателю автомобиля не хватит мощности за доли секунды раскрутить колеса до рабочих оборотов двигателя, а это примерно 2000 обмин, помешает вес автомобиля и сила трения, возникающая при сцеплении колес с покрытием дороги. Выход? Установить промежуточный механизм, который понизит крутящий момент двигателя, до необходимых оборотов и передаст его на ведущие колеса. Вот этот механизм, состоящий из нескольких узлов, и называется трансмиссией.
Основным назначением трансмиссии является передача, регулирование пошагово, распределение по ведущим колесам крутящего момента от маховика двигателя. Условно, трансмиссию, по способу передачи можно поделить на:
- механическую,
- электрическую,
- гидрообъемную,
- комбинированную.
Самая распространенная, это механическая трансмиссия. На ее основе и рассмотрим работу узлов .
В состав трансмиссии входят несколько узлов:
- Сцепление — предназначено для «мягкого» присоединения маховика к первичному валу коробки передач и передачи крутящего момента. Сцепление состоит из трех элементов – корзина сцепления, диск сцепления и выжимной подшипник.
- Коробка передач — устройство, преобразующее крутящий момент. Предназначена для дальнейшей передачи крутящего момента к карданному валу или непосредственно к главной передаче, с возможностью его изменения (пошагово). Усилие двигателя передается посредством вторичного вала. Коробки передач бывают механические и автоматические.
- Карданный вал (для заднеприводных авто), устройство передачи крутящего момента от вторичного вала коробки передач к главной передаче.
- Главная передача, дифференциал – в совокупности составляют «мост», который предназначен для передачи силы двигателя через приводные валы (полуоси) к колёсам, а также распределения усилия между колесами. Для заднего привода «мост» располагается в задней части автомобиля и имеет (в некоторых случаях) общий корпус с полуосями. Соответственно и система смазки общая. Для переднего привода «мост» совмещен в одном корпусе с коробкой передач.
- Приводной вал (полуось) – представляет собой металлический стержень из высоколегированной стали и устройством зацепления с дифференциалом и шарниром равных угловых скоростей (ШРУС). Это могут быть проточенные шлицы или устройство крепления крестовин.
- Шарнир равных угловых скоростей (ШРУС) – предназначен для подачи силы вращения на ведущие колеса. Есть несколько видов ШРУСов: шариковый и трипоид.
- Раздаточный механизм – устройство распределения усилия двигателя по ведущим колесам, применяется в автомобилях с колесной формулой 4х4. «Раздатка» может быть размещена как в одном корпусе с коробкой передач, так и отдельным узлом.
Трансмиссия переднеприводного автомобиля
У переднеприводных и заднеприводных автомобилей существуют различия в системе трансмиссии. На автомобилях, где ведущими являются передние колёса (передний привод), трансмиссия со всеми её узлами установлена под капотом. Что касается коробки передач, то в неё входит ещё и главная передача с дифференциалом. Поэтому в данном случае из картера коробки передач выходят валы привода к передним колёсам. На переднеприводных транспортных средствах, система трансмиссии состоит из таких узлов как:
- коробка передач;
- сцепление;
- валы привода передних колёс;
- шарниры равных угловых скоростей;
- дифференциал;
- главная передача.
Отличительной особенностью трансмиссии переднего привода, является размещение главной передачи и дифференциала непосредственно в картере коробки передач. Ну и передний мост в данном случае является ведущим, с управляемыми колёсами.
Трансмиссия заднеприводного автомобиля
Заднеприводная трансмиссия включает в себя следующие взаимосвязанные элементы:
- коробку передач;
- сцепление;
- главную передачу;
- дифференциал;
- карданную передачу;
- полуоси.
Стоит отметить, что на заднеприводных автомобилях коробка передач устанавливается на более мягкие опоры, что позволяет снизить уровень вибрации и создаёт дополнительный комфорт. Трансмиссия автомобиля при заднем приводе характеризуется тем, что наиболее массовым вариантом расположения КПП, является её блокировка вместе со сцеплением к заднему мосту посредством карданного вала. Такой вариант приводит к концентрации центра масс в район передней оси. Следует отметить, что вариант автомобилей с задним приводом считается классическим, и трансмиссия в данном случае более проста по своей конструкции и в эксплуатации.
Трансмиссия работает следующим образом : на маховик, через фрикционные накладки диска сцепления, жестко крепится корзина сцепления своей рабочей поверхностью. В диске изготовлено шлицевое отверстие, куда направляется первичный вал коробки передач. Когда сцепление отпущено , диск плотно зажимается между маховиком и «корзиной» и крутится вместе с ними, приводя в действие первичный вал. При нажатии на педаль сцепления , в действие приводится выжимной подшипник, который нажимает на лепестки корзины и освобождает диск сцепления, в этот момент работает двигатель «вхолостую».
Далее первичный вал посредством шестерен передач с разным передаточным числом приводит в действие вторичный вал. Переключая передачи можно регулировать передаточное число, соответственно обороты вторичного вала изменяются.
Хвостовик коробки передач (для заднего привода) соединен с карданным валом, далее крутящий момент поступает на главную передачу и распределяется на колеса с помощью дифференциала и полуосей.
Вторичный вал коробки передач (для переднего привода) непосредственно соединен с главной передачей и дифференциалом. К дифференциалу подсоединены полуоси, на них соответственно ШРУСы через которые крутящий момент передается на колеса.
Для полноприводных автомобилей крутящий момент передается через раздаточный механизм, который имеет один выход хвостовика для подачи на кардан. Полноприводные авто могут обеспечиваться блокировкой моста, т.е. отключение перераспределения по полуосям крутящего момента.
В этой статье мы рассмотрели, что такое трансмиссия, ее устройство и принцип работы.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
Как это работает: трансмиссия
Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.
Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.
Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.
Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.
Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).
Полноприводные автомобили имеют большое разнообразие схем трансмиссий. Их можно условно разделить на три группы.
a. Полный привод, подключаемый водителем. В такой схеме трансмиссии обязательно есть раздаточная коробка, при этом на большинстве моделей нет межосевого дифференциала. Раздаточная коробка распределяет крутящий момент между передней и задней осями (мостами).
б. Полный привод, подключаемый автоматически. В большинстве таких трансмиссий постоянно ведущими являются передние колеса, а между осями вместо дифференциала установлена фрикционная муфта с электронным управлением или вискомуфта. Вискомуфта (вязкостная муфта) — передает крутящий момент при разных скоростях вращения частей ее корпуса за счет трения кремнийорганической жидкости между дисками. Вискомуфта может устанавливаться между осями или встраиваться в корпус дифференциала для его автоматической блокировки. Фрикционные муфты передают крутящий момент за счет трения при сжатии пакета дисков.
в. Постоянный полный привод. Автомобили с такой трансмиссией обязательно имеют межосевой дифференциал. Передачу мощности к четырем колесам используют не только для повышения проходимости (у вседорожников), но и для лучшей реализации разгонных свойств автомобиля. Оба эффекта достигаются за счет перераспределения силы тяги — на каждом колесе она получается меньше, соответственно ниже вероятность их пробуксовки.
Основные требования, предьявдяемые к трансмиссии:
— обеспечение высоких тяговых качеств и скорости машины при прямолинейном движении и повороте;
— простота и легкость управления, исключающие быструю утомляемость водителя;
— высокая надежность работы в течение длительного периода эксплуатации;
— малые масса и габаритные размеры агрегатов;
— простота (технологичность) в производстве, удобство в обслуживании при эксплуатации и ремонте;
— высокий КПД;
— в машинах высокого класса добавляется требование бесшумности.
Трансмиссия
Трансмиссия автомобиля выполняет две функции: она передает крутящий момент от двигателя ведущим колесам автомобиля, а также изменяет его величину и направление. При передаче крутящего момента трансмиссия, кроме того, перераспределяет его между отдельными колесами.
Назначение трансмиссии
Двигатели внутреннего сгорания, являющиеся на сегодняшний день основным источником энергии для автомобилей, имеют максимальные значения крутящего момента и мощности при разных значениях частоты вращения коленчатого вала двигателя. Для того чтобы использовать соответствующие обороты двигателя при различных скоростях движения автомобиля, необходимо иметь возможность изменять передаточное число трансмиссии. Общее передаточное число трансмиссии в любой момент времени можно определить отношением частоты вращения коленчатого вала двигателя к частоте вращения ведущих колес.
Крутящий момент, передающийся на ведущее колесо, определяет тяговое усилие, действующее в контакте колеса с дорогой. Это усилие определяется делением величины крутящего момента на радиус колеса. Для движения автомобиля необходимо, чтобы тяговое усилие было больше суммы сил сопротивления движению (силы сопротивления качению, силы сопротивления подъему, силы инерции, аэродинамического сопротивления). Сумма сил сопротивления движению изменяется в широких пределах в зависимости от условий движения, поэтому трансмиссия автомобиля должна обеспечивать возможность изменения тягового усилия путем изменения в широком диапазоне крутящего момента. Максимальное тяговое усилие ограничивается не возможностями двигателя и трансмиссии, а сцеплением колес с дорогой. Это усилие не должно превышать силу сцепления, иначе ведущие колеса будут проскальзывать и автомобиль не сможет двигаться. Силу сцепления можно определить, умножив часть массы автомобиля, приходящегося на одно колесо, на коэффициент сцепления — ϕ. Коэффициент сцепления зависит от состояния дорожного покрытия, качества и состояния шин и находится в пределах от 0,1 до 0,9.
Наибольшее суммарное тяговое усилие может быть реализовано, если все колеса автомобиля будут ведущими. Тем не менее для движения автомобиля по дорогам с твердым покрытием достаточно двух ведущих колес на одной оси. Увеличение числа ведущих колес приводит к усложнению трансмиссии и увеличению механических потерь, поэтому конструкторам автомобилей приходится применять компромиссные решения в зависимости от назначения автомобиля.
Механические трансмиссии
Выбор типа привода ведущих колес и компоновки автомобиля определяют возможность в наибольшей степени реализовать те или иные его свойства. Особенности привода оказывают влияние на топливную экономичность, безопасность, массу и компактность автомобиля, а также на показатели устойчивости, управляемости и тормозной динамики.
Схема трансмиссии автомобиля классической компоновки:
1 — двигатель;
2 — коробка передач;
3 — главная передача и дифференциал;
4 — карданная передача
У автомобилей классической компоновки с колесной формулой 4×2 крутящий момент от двигателя передается через сцепление к коробке передач. В коробке передач крутящий момент может ступенчато изменяться в соответствии с включенной передачей. Двигатель, сцепление и коробка передач обычно объединяются в один блок, образуя силовой агрегат. От коробки передач крутящий момент передается через карданную передачу к главной передаче, где увеличивается, и далее через дифференциал и полуоси подводится к ведущим колесам. Главная передача, дифференциал и полуоси с колесами образуют ведущий мост.
Схема трансмиссии переднеприводного автомобиля:
1 — двигатель;
2 — главная передача и дифференциал;
3 — коробка передач
Если силовой агрегат располагается в непосредственной близости от ведущего моста (переднеприводные автомобили и автомобили заднемоторной компоновки с задними ведущими колесами), в трансмиссии можно обойтись без карданной передачи между коробкой передач и главной передачей. При такой компоновке главная передача и дифференциал обычно объединяются в один агрегат, а для привода ведущих колес используются полуоси с шарнирами.