Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой двигатель

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ‘ c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n — Q ‘ c h ( 1 ) .

Отсюда теплота Q ‘ c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n — Q ‘ c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ‘ n телу с наиболее высокой температурой с Q ‘ n > Q c h , получила название холодильной машины.

Данная машина должна совершить работу A ‘ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a = Q ‘ n A ‘ = Q ‘ n Q ‘ n — Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

КПД теплового двигателя

Французским инженером Саади Карно была установлена зависимость КПД теплового двигателя от температуры нагревателя T n и холодильника T c h . Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

η m a x = T n — T c h T n ( 5 ) .

Любой реальный тепловой двигатель может обладать КПД η ≤ η m a x .

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм ( 1 — 2 , 4 — 3 ) и двух адиабат ( 2 — 3 , 4 — 1 ) , изображенная на рисунке 1 . В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Участок 1 — 2 характеризуется сообщением рабочему телу от нагревателя с температурой T n количества тепла Q n . При изотермическом процессе запись примет вид:

Q n = T n ( S 2 — S 1 ) ( 6 ) , где S 1 , S 2 являются энтропиями в соответствующих точках цикла из рисунка 1 .

Видно, что участок 3 — 4 характеризуется отдачей тепла холодильнику с температурой T c h идеальным газом, причем количество теплоты равняется получению газом теплоты — Q c h , тогда:

— Q c h = T c h ( S 1 — S 2 ) ( 7 ) .

Выражение, записанное в скобках в ( 7 ) , указывает на приращение энтропии процесса 3 — 4 .

Принцип действия тепловых двигателей КПД

Произведем подстановку ( 6 ) , ( 7 ) в определение КПД теплового двигателя и получаем:

η = T n ( S 2 — S 1 ) + T c h ( S 1 — S 2 ) T n ( S 2 — S 1 ) = T n — T c h T n ( 8 ) .

В выведенном выражении ( 8 ) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению ( 8 ) видно, что для увеличения КПД следует повышать T n и понижать T c h . Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение T n .

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода. Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода. Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Рассчитать КПД теплового двигателя с температурой нагревания 100 ° С и температурой холодильника, равной 0 ° С . Считать тепловую машину идеальной.

Решение

Необходимо применение выражения для КПД теплового двигателя, которое записывается как:

η = T n — T c h T n .

Используя систему С И , получим:

T n + 100 ° C + 273 = 373 ( К ) . T c h = 0 ° C + 273 = 273 ( К ) .

Подставляем числовые значения и вычисляем:

η = 373 — 273 373 = 0 , 27 = 27 % .

Ответ: КПД теплового двигателя равняется 27 % .

Найти КПД цикла, представленного на рисунке 2 , если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ .

Решение

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η = Q n — Q ‘ n Q n ( 2 . 1 ) .

Получения тепла газом происходит во время процесса 1 — 2 Q 12 = Q n :

Q 12 = ∆ U 12 + A 12 ( 2 . 2 ) , где A 12 = 0 потому как является изохорным процессом. Отсюда следует:

Q 12 = ∆ U 12 = i 2 R T 2 — T 1 ( 2 . 3 ) .

Процесс, когда газ отдает тепло, обозначается как 3 — 4 , считается изохорным — Q 34 = Q ‘ c h . Формула примет вид:

Q 34 = ∆ U 34 = i 2 v R T 4 — T 3 ( 2 . 4 ) .

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η = i 2 v R T 2 — T 1 + i 2 v R T 4 — T 3 i 2 v R T 2 — T 1 = T 2 — T 1 + T 4 — T 3 T 2 — T 1 = 1 — T 3 — T 4 T 2 — T 1 ( 2 . 5 ) .

Следует применить уравнение для адиабаты процессу 2 — 3 :

T 2 V 1 γ — 1 = T 3 V 2 γ — 1 → T 2 = T 3 V 2 γ — 1 V 1 γ — 1 = T 3 n γ — 1 ( 2 . 6 ) .

Используем выражение для адиабаты процесса 4 — 1 :

T 1 V 1 γ — 1 = T 3 V 2 γ — 1 → T 1 = T 4 V 2 γ — 1 V 1 γ — 1 = T 4 n γ — 1 ( 2 . 7 ) .

Перейдем к нахождению разности температур T 2 — T 1 :

T 2 — T 1 = T 3 — T 4 n Г — 1 ( 2 . 8 ) .

Произведем подстановку из ( 2 . 8 ) в ( 2 . 5 ) :

η = 1 — T 3 — T 4 T 3 — T 4 n γ — 1 = 1 — 1 n γ — 1 = 1 — n 1 — γ ( 2 . 9 ) .

Ответ: КПД цикла равняется η = 1 — n 1 — Г .

Как устроены и как работают тепловые двигатели

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

О паровых двигателях

Хронология этого изобретения ведёт свой отсчёт от эпохи Архимеда, придумавшего пушку, стрелявшую с помощью пара. Затем следует череда славных имён, предлагавших свои проекты. Наиболее эффективный вариант устройства принадлежит русскому изобретателю Ивану Ползунову. В отличие от своих предшественников он предложил непрерывный ход рабочего вала за счёт использования попеременной работы 2-х цилиндров.

Сгорание топлива и образование пара у паровых машин происходит вне рабочей камеры. Поэтому их называют двигателями внешнего сгорания.

По такому же принципу образуется рабочее тело в паровых и газовых турбинах. Их далеким прообразом явился шар, вращаемый паром. Автором этого механизма был учёный Герон, творивший свои машины и приборы, в древней Александрии.

Читать еще:  Что такое защита двигателя шериф

О двигателях внутреннего сгорания

В конце XIX века немецким конструктором Августом Отто была предложена конструкция ДВС с карбюратором, где приготавливается топливовоздушная смесь.

Остановимся более подробно на его работе. Каждый цикл работы состоит из 4-х тактов: впуска, сжатия, рабочего хода и выпуска.

Во время первого такта горючая смесь впрыскивается в цилиндр и сжимается поршнем. Когда компрессия достигает максимума, срабатывает система электроподжига (искра от свечи). В результате этого микровзрыва температура в камере сгорания достигает 16 000 — 18 000 градусов. Образующиеся газы давят на поршень, толкают его, проворачивая соединенный с поршнем коленчатый вал. Это и есть рабочий ход, приводящий автомобиль в движение.

А охладившиеся газы через выпускной клапан выбрасываются в атмосферу. Пытаясь улучшить эффективность работы устройства, разработчики увеличивали степень сжатия горючей смеси, но тогда она самовоспламенялась «досрочно».

Немецкий инженер Дизель нашел интересный выход из этого затруднения…

В цилиндрах дизеля за счёт движения поршня сжимается чистый воздух. Это позволило в несколько раз увеличить степень сжатия. Температура в камере сгорания достигает 900 град. В конце такта сжатия туда впрыскивается солярка. Её мелкие капли, смешавшись со столь разогретым воздухом, самовоспламеняются. Образующиеся газы, расширяясь, давят на поршень, осуществляя рабочий ход.

Итак, дизельные двигатели отличаются от карбюраторных:

  • По роду используемого топлива. Карбюраторные двигатели — бензиновые. Дизельные — потребляют исключительно солярку.
  • Дизель на 15–20 % экономичнее карбюраторных двигателей за счёт большей степени сжатия, но его обслуживание дороже, чем у его соперника — бензинового двигателя.
  • В числе минусов дизеля — в холодные российские зимы солярка загустевает, нужен её подогрев.
  • Последние исследования американских учёных показали, что выбросы от дизельных двигателей по составу менее вредны, чем от их бензиновых аналогов.

Многолетняя конкуренция между двумя видами ДВС завершилась распределением сферы их использования. Дизельные двигатели как более мощные устанавливаются на морском транспорте, на тракторах и автомобилях большой грузоподъёмности, а карбюраторные — на автомобили малой и средней грузоподъемности, на моторные лодки, мотоциклы и т. д.

Коэффициент полезного действия (КПД)

Эффективность эксплуатации любого механизма определяется его КПД. Паровой двигатель, выпускающий отработанный пар в атмосферу, имеет весьма низкий КПД от 1 до 8%, бензиновые двигатели до 30%, обычный дизельный двигатель до 40%. Безусловно, во все времена инженерная мысль не останавливалась и искала пути повышения КПД.

Талантливый французский инженер Сади Карно разработал теорию работы идеального теплового двигателя.

Его рассуждения были следующими: чтобы обеспечить повторяемость циклов, необходимо, чтобы расширение рабочего вещества при нагревании сменялось его сжатием до первоначального состояния. Этот процесс может совершаться только за счёт работы внешних сил. Причём работа этих сил должна быть меньше полезной работы самого рабочего тела. Для этого следует понизить его давление путём охлаждения в холодильнике. Тогда график всего цикла будет иметь вид замкнутого контура, он то и стал называться циклом Карно. Максимальный КПД идеального двигателя вычисляется по формуле:

Где η сам коэффициент полезного действия, T1 и T2 абсолютные температуры нагревателя и холодильника. Они вычисляются по формуле T= t+273, где t температура по Цельсию. Из формулы видно, что для увеличения КПД необходимо увеличить температуру нагревателя, что ограничено жаропрочностью материала, или понизить температуру холодильника. Максимальный КПД будет при Т= 0К, что также технически неосуществимо.

Реальный коэффициент всегда меньше КПД идеального теплового двигателя. Сравнивая реальный коэффициент с идеальным, можно определить резервы для совершенствования имеющегося двигателя.

Работая в этом направлении, конструкторы снабдили бензиновые двигатели последнего поколения инжекторными системами подачи топлива (впрыскивателями). Это позволяет с помощью электроники добиться его полного сгорания и соответственно увеличить КПД.

Изыскиваются пути уменьшения трения соприкасающихся деталей двигателя, а также улучшения качества используемого топлива.

Прежде природа угрожала человеку, а теперь человек угрожает природе

Со следствиями неразумной деятельности человека приходится сталкиваться уже нынешнему поколению. И значительный вклад в нарушение хрупкого равновесия природы вносит огромный объём тепловых двигателей, используемых на транспорте, в сельском хозяйстве, а также паровых турбин электростанций.

Это вредное воздействие проявляется в колоссальных выбросах и повышении содержания углекислого газа в атмосфере. Процесс сгорания топлива сопровождается потреблением атмосферного кислорода в таких масштабах, что это превышает его выработку всей земной растительностью.

Значительная часть тепла от двигателей рассеивается в окружающей среде. Этот процесс, усугубляемый парниковым эффектом, приводит к повышению среднегодовой температуры на Земле. А глобальное потепление чревато катастрофическими последствиями для всей цивилизации.

Чтобы ситуация не усугублялась, необходима эффективная очистка, отработанных газов, переход на новые экологические стандарты, предъявляющие более жёсткие требования к содержанию вредных веществ в выхлопных газах.

Очень важно использовать только качественное топливо. Хорошие перспективы ожидаются от использования в качестве горючего водорода, поскольку при его сгорании вместо вредных выбросов образуется вода.

В недалеком будущем значительная часть автомобилей, работающих на бензине, будет заменена электромобилями.

Только общими усилиями мы можем сохранить этот удивительный мир, которым природа одарила нашу планету.

Тепловые двигатели и их применение

Главная > Реферат >Физика

Тепловые двигатели и их применение

Тепловой двигатель – устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твердое и жидкое топливо, солнечная и атомная энергии.

Тепловые двигатели — паровые турбины — устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном — поршневые двигатели внутреннего сгорания, на водном — двигатели внутреннего сгорания и паровые турбины, на железнодорожном — тепловозы с дизельными установками, в авиации — поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Паросиловая станция. Работа этих двигателей производится посредством пара. В огромном большинстве случаев — это водяной пар, но возможны машины, работающие с парами других веществ (например, ртути). Паровые турбины ставятся на мощных электрических станциях и на больших кораблях. Поршневые двигатели в настоящее время находят применение только в железнодорожном и водном транспорте (паровозы и пароходы).

Для работы парового двигателя необходим ряд вспомогательных машин и устройств. Все это хозяйство вместе носит название паросиловой станции. На паросиловой станции все время циркулирует одна и та же вода.

Рис.1. Схема оборудования

Вода превращается в пар в котле, пар производит работу в турбине (или в поршневой машине) и снова превращается в воду в барабане, охлаждаемом проточной водой (конденсатор). Из конденсатора получившаяся вода посредством насоса через сборный, бак (сборник) снова направляется в котел.

В этой схеме паровой котел является нагревателем, а конденсатор — холодильником. Так как в установке циркулирует практически одна и та же вода (утечка пара не­велика и добавлять воды почти не приходится), то в котле почти не получается накипи, т. е. осаждения растворенных в воде солей. Это важно, так как накипь плохо проводит тепло и уменьшает коэффициент полезного действия котла. В случае появления накипи на стенках котла ее удаляют.

Читать еще:  Двигатель 6в31 технические характеристики

Паровая турбина – тепловой двигатель ротационного типа, преобразующий потенциальную энергию пара сначала в кинетическую энергию и далее в механическую работу. Паровые турбины применяются преимущественно на электростанциях и на транспортных силовых установках – судовых и локомотивных, а также используются для приведения в движение мощных воздуходувок и других агрегатов.

Турбина (см. рисунок 2) состоит из стального цилиндра, внутри которого находится вал с укрепленными на нем рабочими колесами. На рабочих колесах находятся особые изогнутые лопатки (b). Между рабочими колесами помещаются сопла или направляю­щие лопатки (a). Пар, вырываясь из промежутков между направляющими лопатками, попадает на лопатки рабочего колеса. Рабочее колесо при этом вращается, производя работу. Причиной вращения колеса в паровой турбине является реакция струи пара. Внутри турбины пар расширяется и охлаждается. Входя в турбину по узкому паропроводу, он выходит из нее по очень широкой трубе.

После турбины или поршневой машины пар поступает в конденсатор, играющий роль холодильника. В конденсаторе пары должны превратиться в воду. Но пар конденсируется в воду только в том случае, если отводится выделяющаяся при конденсации теплота испарения. Это делают при помощи холодной воды. Например, конденсатор может быть устроен в виде барабана, внутри которого расположены трубы с проточной холодной водой.

В зависимости от степени расширения пара в рабочих лопатках различают активные и реактивные турбины. Пар в активной турбине расширяется только в соплах, и его давление при прохождении каждого венца с рабочими лопатками не изменяется. Поэтому активная турбина называется также турбиной равного давления. В соплах реактивных турбин в отличие от активных происходит лишь частичное расширение пара; дальнейшее расширение происходит в рабочих лопатках. Поэтому иногда реактивная турбина называется турбиной избыточного давления.

Отметим, что турбина может вращаться только в одном направлении и скорость вращения ее не может меняться в широких пределах. Это затрудняет применение паро­вых турбин на транспорте, но очень удобно для вращения электрических генераторов.

Лопатки на рабочем колесе паровой турбины

Весьма важной для электрических станций является возможность строить турбины на громадные мощности (до 1 000 000 кВт и более), значительно превышающие максимальные мощности других типов тепловых двигателей. Это обусловлено равно­мерностью вращения вала турбины. При работе турбины отсутствуют толчки, которые получаются в поршневых машинах при движении поршня взад и вперед.

Поршневая паровая машина. Основы конструкции поршневой паровой машины, изобретенной в конце XVIII века[1], в основном сохранились до наших дней. В настоящее время она частично вытеснена другими типами двигателей. Однако у нее есть свои достоинства, заставляющие иногда предпочесть ее турбине. Это — про­стота обращения с ней, возможность менять скорость и давать задний ход.

В основу краткой классификации паровой машины могут быть положены признаки:

· по назначению: стационарные, паровозные, судовые, локомобильные, автомобильные и др.;

· по расположению и числу цилиндров: горизонтальные, вертикальные, наклонные; одноцилиндровые и многоцилиндровые – тандем-машины и компаунд-машины;

· по числу оборотов: тихоходные, среднеходные, быстроходные;

· по давлению и способу использования отработавшего пара: конденсационные, с выхлопом в атмосферу, с противодавлением, с промежуточным отбором пара;

· по действию пара на поршень: простого и двойного действия;

· по типу парораспределения: золотниковые, клапанные, крановые, прямоточные.

Устройство паровой машины показано на рисунке 3. Основная ее часть — чугунный цилиндр 1, в котором ходит поршень 2. Рядом с цилиндром расположен парорас­пределительный механизм. Он состоит из золотниковой коробки, имеющей сообщение с паровым котлом. Кроме котла, коробка посредством отверстия 3 сообщается с кон­денсатором (в паровозах чаще всего просто через дымовую трубу — с атмосферой) и с цилиндром посредством двух окон 4 и 5. В коробке находится золотник 6, движимый специальным механизмом посредством тяги 7 так, что, когда поршень движется направо (рис. а), левая часть цилиндра через окно 4 сообщается с паровым котлом, а правая — через окно 5 с атмосферой. Свежий пар входит в цилиндр слева, а отработанный пар из правой части цилиндра уходит в атмосферу. Затем, когда поршень движется налево (рис. б), золотник передвигается так, что свежий пар входит в правую часть цилиндра, а отработанный пар из левой части уходит в атмосферу. Пар подается в цилиндр не во все время хода поршня, а только в начале его. После этого благодаря особой форме золотника пар отсекается (перестает подаваться в цилиндр) и работа производится расширяющимся и охлаждающимся паром. Отсечка пара дает большую экономию энергии.

Коэффициент полезного действия теплового двигателя. Назначение теплового двигателя — производить механическую работу. Но только часть теплоты, полученной двигателем, затрачивается на совершение работы. Отношение механической работы, совершаемой двигателем, к израсходованной энергии называется коэффициентом полезного действия двигателя (к. п. д.). К. п. д. паросиловой станции может быть не более 10 — 15 %, паровой машины на паровозе – 8 %. Потери энергии, которые имеют место при работе паросиловой станции, можно разделить на две части. Часть потерь обусловлена несовершенством конструкции и может быть уменьшена без изменения температуры в котле и в конденсаторе. Например, устроив более совершенную теп­ловую изоляцию котла, можно уменьшить потери теплоты в котельной. Вторая, значительно большая часть, — потеря теплоты, переданной воде, охлаждающей конденсатор, оказывается при заданных температурах в котле и в конденсаторе совершенно неизбежной.

Большой научный и технический опыт по устройству тепловых двигателей и глубокие теоретические исследования, касающиеся условий работы тепловых двигателей, установили, что к. п. д. теплового двигателя зависит от разности температур нагревателя и холодильника. Чем больше эта разность, тем больший к. п. д. может иметь паросиловая установка (конечно, при условии устранения всех технических несовершенств конструкции, о которых упоминалось выше). Но если разность эта невелика, то даже самая совершенная в техническом смысле машина не может дать значительного к. п. д.

Вместо увеличения температуры в котле можно было бы понижать температуру в конденсаторе. Однако это оказалось практически неосуществимым. При очень низких давлениях плотность пара очень мала и при большом количестве пара, пропускаемого за одну секунду мощной турбиной, объем турбины и конденсатора при ней должен был бы быть непомерно велик.

Кроме увеличения к. п. д. теплового двигателя, можно пойти по пути использования «тепловых отбросов», т. е. теплоты, отводимой водой, охлаждающей конденсатор. Вместо того чтобы спускать нагретую конденсатором воду в реку или озеро, можно направить ее по трубам водяного отопления или использовать ее для промышленных целей. Можно также производить расширение пара в турбинах только до давления 5—6 атм. Из турбины при этом выходит еще очень горячий пар, могущий служить для ряда промышленных целей.

Станция, использующая отбросы теплоты, снабжает потребителей не только электрической энергией, полученной за счет механической работы, но и теплотой. Она называется теплоэлектроцентралью (ТЭЦ).

Двигатели внутреннего сгорания

Бензиновый двигатель внутреннего сгорания. Самый распространенный тип современного теплового двигателя — двигатель внутреннего сгорания. Двигатели внутреннего сгорания устанавливаются на автомобилях, самолетах, танках, тракторах, моторных лодках и т. д. Двигатели внутреннего сгорания могут работать на жидком топливе (бензин, керосин и т. п.) или на горючем газе, сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева (газогенераторные двигатели).

Читать еще:  Что такое ппп двигателя

Рассмотрим устройство четырехтактного бензинового двигателя автомобильного типа (см. рисунок 6). Устройство двигателей, устанавливаемых на тракторах, танках и самолетах, в общих чертах сходно с устройством автомобильного двигателя.

Основной частью двигателя внутреннего сгорания является один или несколько цилиндров, внутри которых производится сжигание топлива. Отсюда и название двигателя.

Внутри цилиндра передвигается поршень. Поршень представляет собой полый, с одной стороны закрытый цилиндр 1, опоясанный пружинящими кольцами 2, вложенными в канавки на поршне (поршневые кольца). Назначение поршневых колец — не пропускать газы, образующиеся при сгорании топлива, в промежуток между поршнем и стенками цилиндра (показаны штриховой линией). Поршень снабжен металлическим стержнем 3 («пальцем»), служащим для соединения поршня с шатуном 4. Шатун в свою очередь служит для передачи движения от поршня коленчатому валу 5.

Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из каналов — впускной подается горючая смесь, через другой — выпускной выбрасываются продукты сгорания. Клапаны имеют вид тарелок, прижимаемых к отверстиям пружинами. Клапаны открываются при помощи кулачков, помещенных на кулачковом валу; при вращении вала кулачки поднимают клапаны посредством стальных стержней (толкателей). Кроме клапанов, в верхней части цилиндра поме­щается так называемая свеча. Это — приспособление для зажигания смеси посредством электрической искры, получаемой от установленных на двигателе электрических приборов (магнето или бобины).

Весьма важной частью бензинового двигателя является прибор для получения горючей смеси — карбюратор. Его устройство схематически показано на рисунке 7. Если в цилиндре открыт только впускной клапан и поршень движется к коленчатому валу, то сквозь отверстие 1 засасывается воздух. Воздух проходит мимо трубочки 2, соединенной с поплавковой камерой 3. В камере 3 находится бензин, подцеживаемый при помощи поплавка 4 на таком уровне, что в трубочке 1 он как раз доходит до конца ее. Это достигается тем, что поплавок, поднимаясь при натекании бензина в камеру, запирает отверстие 5 особой запорной иглой 6 и тем прекращает подачу бензина, если уровень его повысится. Воздух, проходя с большой скоростью мимо конца трубочки 2, засасывает бензин и распыляет его (по принципу пульверизатора). Таким образом получается горючая смесь (пары бензина и воздух), приток которой в цилиндр регулируется дроссельной заслонкой 7.

Что такое устройство теплового двигателя

CZ.1.07/1.1.10/03.0026

Конструктивные особенности двигателей и станков

Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX в. наряду со словом «мотор», которым с середины ХХ века чаще называют электродвигатели и двигатели внутреннего сгорания.

Двигатели подразделяют на первичные и вторичные.

К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, например, ветрянное колесо, водяное колесо; тепловые двигатели — в них химическая энергия топлива или атомная энергия преобразуются в другие виды энергии ,а ко вторичным относятcя двигатели преобразующие энергию, выработанную или накопленную другими источниками (электридвигатель, пневмодвигатель,гидродвигатель).

В зависимости от используемого вида энергии двигатели делятся на:

  • тепловые
  • гидравлические
  • электрические.

Современная техника использует три типа тепловых машин:

  • поршневые
  • турбинные
  • и реактивные.

Виды тепловых двигателей:

  • паровая машина,
  • двигатель внутреннего сгорания,
  • паровая и газовая турбины,
  • реактивный двигатель.

По данным агенства экономических новостей, более перспективными разработками в настоящее время являются термомагнитный двигатель и тепловойдвигатель с внешним подводом теплоты.

По конструктивным особенностям двигатели подразделяются на:

  • поршневые двигатели (двигатели внутреннего сгорания, дизельныe,бензиновыe)
  • роторныe двигатели (паровые турбины, большинство электромоторов)
  • реактивныe двигатели (воздушно-реактивные, pакетные двигатели).

Поршневые двигатели также разделяются на три группы:

  • на двигатели, которые работают по циклу Отто (карбюраторные),
  • циклу Дизеля (дизельные)
  • и по циклу Тринклера с использованием форсунки.

Основными состабляющими двигателя внутреннего сгорания являются:

  • цилиндр
  • впускной клапан
  • выпускной клапан
  • впускной коллектор
  • свеча
  • камера сгорания
  • поршень
  • шатун
  • каленвал

Каждое движение поршня называется тактом. Цикл, создающий энергию для работы двигателя, состоит из четырех тактов: вниз, вверх, вниз, вверх. Соответственно этот процесс называется четырехтактным циклом.

Наиболее широко используются поршневые двигатели внутреннего сгорания. Двигатель внутреннего сгорания – это тепловая машина, в которой топливо сжигается в цилиндре под поршнем. Он используется для привода средств наземного, воздушного и водного транспорта, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров и т.д.

Рассмотрим теперь конструктивные особенности станков.

Станок — машина, используемая (как правило, в промышленности) для обработки различных материалов, либо приспособление для выполнения чего-либо.
Большинство деталей машин обрабатываются на металлорежущих станках.
Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров..

Основные составляющие станка:
Сyппорт, предназначенный для крепления и ручного либо автоматического перемещения инструмента.
Шпи́ндель — вращающийся вал металлорежущего станка с устройством для закрепления обрабатываемого изделия или режущего инструмента;
Привод — совокупность устройств, предназначенных для приведения в действие машин.
Ба́бка — предназначается для точного поддержания и перемещения обрабатываемой на станке детали относительно режущего инструмента или обрабатывающей поверхности. Располагается и крепится на станине.
Бабка передняя (бабка шпиндельная или бабка изделия) — узел связан с шпинделем, который сообщает вращательное движение обрабатываемой заготовке, детали или инструменту.
Бабка задняя (упорная) — используется для закрепления инструмента (например, сверл, зенкеров, разверток) для обработки детали по оси с внешней стороны.
Бабка шлифовальная представляет из себя узел шлифовальных станков.
Резец — режущий инструмент с одним прямым, изогнутым или фасонным главным режущим ребром.
Станки могут быть классифицированы по разным признакам.

По степени специализации они относятся к одной из следующих групп:

  • универсальные
  • специализированные
  • специальные.

По степени точности станки делят на пять классов:

  • нормальной точности
  • повышенной точности
  • высокой точности
  • особо высокой точности
  • особо точные станки, иначе мастер-станки.

По степени автоматизации различают механизированные и автоматизированные станки, в том числе автоматы и полуавтоматы:

По расположению шпинделя станки делятся на горизонтальные, вертикальные, наклонные и комбинированные.

В зависимости от массы различают станки легкие (до 1т), средние (до 10 т) и тяжелые (свыше 10 т), среди которых можно выделить особо тяжелые или уникальные (более 100 т).
Совокупность всех типов и размеров выпускаемых станков называется типажом.

По виду обработки металлорежущие станки делятся на:

  • Токарные
  • Сверлильные и расточные
  • Шлифовальные, полировальные, доводочные
  • Комбинированные, электро- и физико-химические
  • Зубо- и резьбо-обрабатывающие
  • Фрезерные
  • Строгальные, долбежные, протяжные
  • Разрезные

Металлорежущие станки почти всех типов выпускаются как с ручным управлением, так и с числовым программным управлением (ЧПУ).

  1. Что такое двигатель?
  2. Назовите основные составляющие двигателя внутреннего сгорания?
  3. Что такое металлорежущий станок?
  4. Какие металлорежущие станки по виду обработки Вы знаете?

Ответы.

  1. Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX в. наряду со словом «мотор», которым с середины ХХ века чаще называют электродвигатели и двигатели внутреннего сгорания.
  2. Основными состабляющими двигателя внутреннего сгорания являются: цилиндр, впускной клапан, выпускной клапан, впускной коллектор, свеча, камера сгорания, поршень, шатун, каленвал.
  3. Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров. На станках обрабатывают заготовки не только из металла, но и из других материалов, поэтому термин «металлорежущий станок» является условным.
  4. По виду обработки металлорежущие станки делятся на токарные; cверлильные и расточные; шлифовальные, полировальные, доводочные; комбинированные, электро- и физико-химические; зубо- и резьбо-обрабатывающие; фрезерные; cтрогальные, долбежные, протяжные ; paзрезные.
Ссылка на основную публикацию
Adblock
detector