Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания схема описание

Двигатель внутреннего сгорания схема описание

Двигателем внутреннего сгорания (ДВС) называется такой поршневой тепловой двигатель, в котором тепловая энергия, возникающая в цилиндрах при сгорании горючей смеси, преобразуется в механическую за счет воздействия на поршни газообразных продуктов сгорания, обладающих высоким давлением и температурой (до 2400° С и 8 МПа). При этом поршни, перемещаясь под давлением продуктов сгорания, приводят во вращение через кривошипно-шатунный механизм коленчатый вал двигателя, а от него — трансмиссию машины.

Принципиальная схема ДВС представлена на рис. 6.1. Из нее видно, что поршень может перемещаться в цилиндре из крайнего верхнего положения, или верхней мертвой точки (ВМТ), в крайнее нижнее положение, или до нижней мертвой точки (НМТ), на расстояние, соответствующее ходу поршня.

От НМТ поршень может перемещаться только вверх до ВМТ. Таким образом, двойной ход поршня (вниз и вверх) соответствует полному обороту вала. Значит, если обеспечить своевременное попадание в цилиндр горючей смеси, ее сжатие и сгорание, а затем удаление продуктов сгорания и новое заполнение цилиндра горючей смесью, можно добиться постоянного вращения коленчатого вала двигателя. На этом основана работа ДВС. А сама совокупность повторяющихся в определенной последовательности процессов впуска горючей смеси, ее сжатия, сгорания с последующим расширением и выпуска продуктов сгорания в атмосферу носит название рабочего цикла ДВС. Часть рабочего цикла, соответствующая перемещению поршня из одного крайнего положения в другое, называется тактом.

Рекламные предложения на основе ваших интересов:

Если полный рабочий цикл ДВС совершается за четыре такта (4 хода поршня), т. е. за два полных обо рота коленчатого вала, то такой двигатель называется четырехтактным; если же рабочий цикл состоит из двух тактов (2 хода поршня), то двигатель считается двухтактным. На рис. 6.1 видно, что полость цилиндра сообщается с внешней средой с помощью двух отверстий, закрываемых клапанами или другим образом. Одно из отверстий является впускным и предназначено для впуска горючей смеси или воздуха, другое — выпускным и служит для выпуска продуктов сгорания. Впускное и выпускное отверстия могут либо полностью перекрываться, либо закрываться попеременно.

Когда поршень занимает крайнее верхнее положение, над ним остается свободное пространство объемом Ус, которое является так называемой камерой сгорания. При перемещении поршня в НМТ в цилиндре освобождается объем Ур, называемый рабочим, который вместе с объемом камеры сгорания Vc образует полный объем цилиндра: V„= Ус+ Vp. Таким образом, поршень, перемещаясь в обратном направлении от НМТ до ВМТ, изменяет объем цилиндра с V„ до VQ, т. е. многократно сжимает газообразные вещества. Поэтому отношение полного объема цилиндра V„ к объему камеры сгорания VQ показывает так называемую степень сжатия в цилиндре е= Vn/Vc, т. е. величину сжатия горючей смеси в момент ее воспламенения. Эта величина зависит от конструкции ДВС. Так, у дизельных двигателей она достигает величины 14…22, а у карбюраторных 6… 10. Когда рабочий объем одного цилиндра Vp умножается на их число, получается рабочий объем двигателя Ул.

Рис. 6.1. Принципиальная схема ДВС

В зависимости от вида применяемого топлива ДВС могут быть дизельными (используется дизельное топливо) и карбюраторными (топливом являются бензин, газ). На автогрейдерах основными двигателями являются многоцилиндровые четырехтактные дизельные двигатели, в качестве пусковых на них используются одноцилиндровые двухтактные бензиновые двигатели. В общем, принципы работы дизельных и карбюраторных двигателей подобны. Основное отличие состоит в том, что в карбюраторных двигателях для воспламенения рабочей смеси (смеси паров топлива, воздуха, остаточных газов) в цилиндрах используется специальная электрическая система зажигания, а на дизельных двигателях — воспламенение топлива, впрыскиваемого под высоким давлением в камеру сгорания, происходит от высокой температуры воздуха, превышающей температуру вспышки смеси топлива и воздуха, сжатого в камере сгорания поршнем. Кроме того, в дизельных двигателях вначале цилиндры наполняются воздухом, а не горючей смесью (смесь мелкораспыленного жидкого или газообразного топлива с воздухом), как у карбюраторных, и сжимается воздух, а не горючая смесь (поэтому-то степень сжатия, температура и давление в цилиндрах у дизельных двигателей выше, чем у карбюраторных). В связи с этим для дизельных двигателей требуется специальная система впрыска топлива под давлением, в то время как у карбюраторных двигателей горючая смесь поступает за счет разрежения, создаваемого поршнями.

Принцип работы четырехтактного дизельного двигателя. Первый такт — впуск воздуха (рис. 6.2, а) производится при движении поршня от ВМТ до НМТ за счет создаваемого в цилиндре разрежения через открытый впускной клапан, который открывается с опережением до прихода поршня в ВМТ и закрывается с запаздыванием после достижения поршнем НМТ.

Рис. 6.2. Принцип работы четырехтактного дизельного двигателя: а — первый такт — впуск воздуха; 6 — второй такт — сжатие воздуха; в — третий такт — рабочий ход; 4— четвертый такт — выпуск отработавших газов; 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — впускной клапан; 5 — форсунка; 6 — выпускной клапан; 7 — цилиндр

Второй такт — сжатие воздуха (рис. 6.2,6) происходит при движении поршня от НМТ к ВМТ при закрытых впускном и выпускном клапанах. В конце сжатия давление воздуха достигает 3…4 МПа при температуре выше 500° С. В момент, когда поршень несколько не доходит до ВМТ, с помощью форсунки производится впрыск топлива под давлением 20…40 МПа. В нагретом воздухе распыленное топливо самовоспламеняется и сгорает.

Третий такт — рабочий ход (рис. 6.2,в) происходит при заканчивающемся сгорании топлива и расширении продуктов сгорания, сопровождающемся перемещением поршня от ВМТ к НМТ. С целью лучшей последующей очистки полости цилиндра от отработавших газов выпускной клапан открывается до момента подхода поршня в НМТ.

Четвертый такт — выпуск отработавших газов (рис. 6.2, г) производится при движении поршня от НМТ к ВМТ, когда выпускной клапан открыт. После этого рабочий цикл двигателя повторяется.

Принцип работы двухтактного карбюраторного двигателя. В отличие от дизельного двигателя для образования горючей смеси в нем использован карбюратор, а система зажигания со свечой, вставленной в головку цилиндра, служит для зажигания горючей смеси (рис. 6.3). В отличие от четырехтактного карбюраторного двигателя в двухтактном двигателе с кривошип- но-камерной продувкой отсутствуют клапаны, а впускное и выпускное отверстия перекрываются самим поршнем. Кроме того, имеется продувочное отверстие и для подачи горючей смеси от карбюратора в цилиндр используется герметичный картер двигателя.

В одном такте двухтактного двигателя сосредоточены не один, а два описанных выше процесса.

Первый такт — рабочий ход поршня (рис. 6.3, а, б) начинается, когда поршень, перекрыв выпускное и продувочное отверстия и открыв впускное отверстие, подходит к ВМТ. Тогда срабатывает свеча, искра от которой воспламеняет сжатую рабочую смесь, в камере сгорания резко повышается температура и давление (до 2,5 МПа). Поршень, под давлением перемещаясь вниз, сначала закрывает впускное отверстие и начинает сжимать рабочую смесь в картере 8 двигателя, а затем открывает выпускное отверстие 2 и продувочное, через которые под давлением (0,1 МПа) рабочей смеси из картера производится удаление отработавших газов и продувка рабочей полости цилиндра. При этом отражатель, установленный на головке поршня, направляет рабочую смесь по всей полости цилиндра, способствуя его очистке от продуктов сгорания. Когда поршень достигает НМТ, начинается его движение вверх.

Читать еще:  Двигатель a14net схема охлаждения

Рис. 6.3. Принцип работы двухтактного карбюраторного двигателя: а — начало рабочего хода поршня; б—конец рабочего хода поршня; 1 — впускное отверстие; 2 — выпускное отверстие; 3 — шатун; 4 — цилиндр; 5 — поршень; 6 — свеча; 7 — продувочное отверстие; 8 — картер; 9—коленчатый вал; 10—карбюратор

Второй такт — сжатие рабочей смеси начинается с продолжающегося удаления отработавших газов и впуска в надпоршневое пространство рабочей смеси. По мере движения поршня вверх сначала перекрывается продувочное отверстие, а затем и выпускное, после чего рабочая смесь сжимается в течение всего движения поршня до ВМТ. В тот момент, когда нижний край поршня открывает впускное отверстие, начинается впуск горючей смеси в полость картера (в подпоршневое пространство). Затем рабочий цикл повторяется.

Принцип и особенности работы поршневых ДВС определили наличие у них следующих основных механизмов и систем: кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня под воздействием давления газов во вращательное движение коленчатого вала; механизм газораспределения, предназначенный для своевременного наполнения цилиндров горючей смесью или воздухом и выпуска отработавших газов в атмосферу; система смазки, предназначенная для очистки и подачи к трущимся сопряженным поверхностям двигателя необходимого для смазки и охлаждения этих поверхностей количества масла; система охлаждения, служащая для охлаждения всех нагреваемых деталей двигателя путем отвода от них тепла; система питания, предназначенная для подачи в цилиндры дозированного количества топлива или горючей смеси в распыленном состоянии; система зажигания (у карбюраторных двигателей), служащая для принудительного воспламенения рабочей смеси в цилиндрах; система пуска, предназначенная для быстрого и уверенного запуска двигателя при любых температурных условиях.

Работу ДВС характеризует такой параметр, как эффективная мощность N3, являющаяся мощностью, снимаемой с коленчатого вала двигателя для производства полезной работы. Мощность указана в паспорте на двигатель. Кроме того, в паспорте дается и регуляторная характеристика двигателя, т. е. зависимости мощности и крутящего момента на валу двигателя от частоты его вращения.

Устройство и теория двигателей внутреннего сгорания

Устройство и теория двигателей внутреннего сгорания

В данной статье разберем устройство и теорию двигателей внутреннего сгорания, рассмотрим из чего они состоят и как работают. Вы найдете основные понятия и термины, описывается конструкция и работа двигателя.

Автомобильные двигатели различают:

  • по способу приготовления горючей смеси — с внешним смесеобразованием (карбюраторные, инжекторные, газовые двигатели) и с внутренним смесеобразованием (дизели),
  • по роду применяемого топлива — бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе),
  • по способу охлаждения — с жидкостным и воздушным охлаждением,
  • расположению цилиндров — рядные и V-образные,
  • по способу воспламенения горючей (рабочей) смеси—с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).

Бензиновые – это двигатели, работающие на бензине, с принудительным зажиганием. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные и инжекторные системы питания. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.

Дизельные — это двигатели, работающие на дизельном топливе с воспламенением от сжатия. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.

Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом. По принципу работы такие двигатели практически не отличаются от бензиновых и мы не будем их рассматривать. Однако, если вы переоборудовали свой автомобиль «на газ», то советую изучить статью Газобаллонное оборудование. Схема ГБО.

Основные механизмы двигателя внутреннего сгорания:

  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания (топливная),
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.
Устройство двигателя внутреннего сгорания

Для начала, возьмем простейший одноцилиндровый двигатель и разберемся с его устройством и работой. Рассмотрим протекающие в нем процессы, и выясним откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.

Одна из основных деталей двигателя — цилиндр 6, в котором находится поршень 7, соединенный через шатун 9 с коленчатым валом 12. При перемещении поршня в цилиндре вверх и вниз его прямолинейное движение шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик 10, который необходим для равномерности вращения вала при работе двигателя. Сверху цилиндр плотно закрыт головкой, в которой находятся впускной 5 и выпускной клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала 14 через передаточные детали 15. Распределительный вал приводится во вращение шестернями 13 от коленчатого вала. Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения.

Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Понятия и термины при работе двигателя

Верхняя мертвая точка (ВМТ) — это крайнее верхнее положение поршня.

Нижняя мертвая точка (НМТ) — это крайнее нижнее положение поршня.

Ход поршня — это расстояние, пройденное от одной мертвой точки до другой. За один ход поршня коленчатый вал повернется на полоборота.

Камера сгорания (сжатия) — это пространство между головкой цилиндра и поршнем, расположенным в ВМТ.

Рабочий объем цилиндра — это пространство, освобождаемое поршнем при перемещение его из ВМТ в НМТ.

Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров двигателя. При малых объемах (до 1 л.) его выражают в кубических сантиметрах, а при больших — в литрах.

Полный объем цилиндра — сумма объема камеры сгорания и рабочего объема.

Степень сжатия — это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. В бензиновых двигателях степень сжатия бывает от 8 до 12, а в дизелях — от 14 до 18. Степень сжатия не стоит путать с компрессией, т.к. это два разных понятия.

Такт — процесс (часть цикла), который происходит в цилиндре за один ход поршня. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называют четырехтактным.

Как работает двигатель внутреннего сгорания

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).

При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре — в верхней (ВМТ) и нижней части (НМТ). В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения.


Рабочий цикл четырехтактного двигателя: а) впуск, б) сжатие, в) рабочий ход, г) выпуск.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом и состоит из тактов впуска, сжатия, рабочего хода и выпуска. Подробнее в статье Принцип работы ДВС. Рабочие циклы двигателя.

Об устройстве двигателя также рассказано в данных статьях:

  • Дизельные двигатели. Устройство и принцип работы
  • Как работает двигатель (из цикла передачи ‘как это устроено’)

Роторно-поршневой двигатель

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Содержание

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 — впускное окно; 2 выпускное окно; 3 — корпус; 4 — камера сгорания; 5 – неподвижная шестерня; 6 — ротор; 7 – зубчатое колесо; 8 — вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов — Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 — спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Любопытные факты

1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

Статья в журнале об РПД польского инженера Рожицкого, «За рулем» №12, 1961

Функциональная модель двигателя внутреннего сгорания

Разработка и создание испытательного стенда для комплексного исследования гидравлических и тепловых режимов работы теплообменного оборудования тепловых сетей и теплопотребителей

Описание проекта

Функциональная модель двигателя внутреннего сгорания

В настоящее время существует большое количество компоновочных схем поршневых двигателей, которые имеют свои плюсы и минусы в зависимости от назначения энергетической установки, на которую они устанавливаются. Поэтому инженеру на начальном этапе необходимо правильно выбрать основные конструктивные и технические характеристики ДВС, которые бы максимально удовлетворяли требованиям заказчика.

В проекте разрабатывается макет двигателя внутреннего сгорания и провести оптимизацию конструкции в соответствии с требованиями заказчика. В частности, необходимо адаптировать конструкцию и характеристики двигателя к конечному объекту заказа (дизель-генератору, дизель-редуктору, тепловозу, карьерному самосвалу, энергетической установке и т.д.).

Цели и задачи проекта

Цель проекта: создание функционирующей модели поршневого двигателя внутреннего сгорания из макетных материалов.

1. Подготовка и анализ технического проекта, технических требований и технического задания.

2. Анализ рынка, выбор конструкции, разработка эскизного проекта.

3. Определение технологии изготовления макета, разработка технического проекта.

4. Разработка рабочей конструкторской документации.

5. Изготовление макета, проведение испытаний.

6. Итоговый анализ проделанной работы, защита проекта

Планируемые результаты проекта

В результате работы над проектом будет пройден полный жизненный цикл создания изделия от технического задания до изготовления макета поршневого ДВС, его испытаний и разработки проекта утилизации. В ходе работы будет разработано техническое задание на макет ДВС, получена конструкторская документация (чертежи на основе 3 D -моделирования, выполнены необходимые расчеты) и технологическая документация, а также изготовлен функционирующий макет поршневого двигателя с помощью 3 D -принтера и лазерного станка с ЧПУ. На завершающем этапе будут проведены испытания макета и проведена защита выполненной работы.

(необходимы сканы писем поддержки)

· ООО «Уральский дизель-моторный завод».

1. Начало работы: 01 октября 2017 года.

2. Разработка технического задания и конструкторской документации: октябрь 2017 года – декабрь 2017 года.

3. Разработка технологической документации и изготовление макета поршневого ДВС: февраль 2018 года – май 2018 года

4. Проведение испытаний, разработка проекта утилизации изделия: май – июнь 2018 года.

5. Завершение работы: 20 июня 2018 года.

Плотников Леонид Валерьевич, доц., к.т.н., доцент кафедры «Турбины и двигатели»; Кротов Владимир Михайлович, ведущий инженер ООО «Уральский дизель-моторный завод».

· Ауд.: Т-704 (ул. Софьи Ковалевской, 5).

Подать заявку на участие в проектной команде

Заявки принимаются по эл. почте leonplot @ mail . ru .

Максимальное количество участников проектной команды

7 человек (1-2 курсы)

Встреча с руководителем проекта состоится в соответствии с дополнительной договоренностью.

Ссылка на основную публикацию
Adblock
detector