Как повысить эффективность электродвигателя
Как повысить эффективность электродвигателя
Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.
Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.
Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.
Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором
На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).
Проблема эффективности двигателя
При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:
- относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
- скорость вращения (число полюсов)
- размер двигателя (номинальная мощность)
- класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД
Эффективность электродвигателя при частичной загрузке
Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым «напор-подача», необходимо оценить воздействие относительной нагрузки на электродвигатель.
Рисунок 2: Эффективность электродвигателя для 100-сильных моторов — Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя
Скорость вращения
На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.
Скорость вращения асинхронного электродвигателя
Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)
Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.
Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.
Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД
Электродвигатели с высоким КПД
На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.
Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.
С другой стороны, если немного большая подача и напор для насоса — это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.
Коэффициент мощности электродвигателя
Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется «Коэффициент Мощности«. Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.
Определение коэффициента мощности:
Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000
Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000
Pi= трехфазный вход кВт
V= среднеквадратичное напряжение (среднее от 3 фаз)
I= среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF= коэффициент мощности в виде дроби
Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:
- покупка электродвигателей с изначально высоким PF
- не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
- нагрузки на электродвигатель)
- установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
- увеличить полную загрузку коэффициента мощности до 95% (Max)
- преобразование в привод с частотным регулированием
Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:
- увеличение PF
- меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
- По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
- падает ниже 60%-70%. (возможная экономия 10%)
- Уменьшение сборов за коэффициент мощности
- Увеличение общей производительности системы
- Интеллектуальная система управления электродвигателем
- Частотно-регулируемый электропривод
Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.
Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.
payaem.ru
Паяем — Все о электронике
Трёхфазный двигатель в однофазной сети
Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.
Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.
Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).
Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:
С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:
где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности
Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.
Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.
Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.
На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.
Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.
Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.
В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).
Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.
Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.
В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.
Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.
Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:
С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P
где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.
Включение трехфазного электродвигателя в однофазную сеть
В ремонтной и любительской практике очень часто возникает необходимость в использовании трехфазных электродвигателей для силового привода (станки, наждаки и другие устройства). Однако для их питания совсем не обязательно наличие трехфазной сети. Наиболее эффективный способ пуска электродвигателя — это подключение третьей обмотки через фазосдвигающий конденсатор.
Чтобы двигатель с конденсаторным пуском работал нормально, емкость конденсатора должна меняться в зависимости от числа оборотов. Поскольку это условие трудно выполнимо, на практике управляют двигателем двухступенчато. Включают двигатель с расчетной (пусковой) емкостью конденсатора, а после его разгона пусковой конденсатор отключают, оставляя рабочий (рис. 13). Пусковой конденсатор отключают вручную переключателем В2.
Рабочая емкость конденсатора (в микрофарадах) для трехфазного двигателя определяется по формуле
если обмотки соединены по схеме «звезда» (рис. 13, а), или
если обмотки соединены по схеме «треугольник» (рис. 13,6). При известной мощности электродвигателя ток (в амперах) можно определить из выражения:
где Р — мощность двигателя, указанная в паспорте (на щитке), Вт; U — напряжение сети, В; cos ф — коэффициент мощности; Л—КПД.
Конденсатор пусковой Сп должен быть в 1,5—2 раза больше рабочего С р.
Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети, а конденсатор обязательно бумажным, например типа МБГО, МБГП и др.
Для электродвигателя с конденсаторным пуском существует очень простая схема реверсирования. При переключении переключателя В1
(см. рис. 13) двигатель меняет направление вращения. Эксплуатация двигателей с конденсаторным пуском имеет некоторые особенности. При работе электродвигателя вхолостую по обмотке, питаемой через конденсатор, протекает ток на 20—40% больше номинального. Поэтому при работе двигателя с недогрузкой нужно соответственно уменьшить рабочую емкость.
При перегрузке двигатель может остановиться, тогда для его запуска необходимо снова включить пусковой конденсатор. Необходимо знать, что при таком включении мощность, развиваемая электродвигателем, составляет 50% от номинального значения.
Все ли трехфазные электродвигатели могут быть включены в однофазную сеть?
В однофазную сеть могут быть включены любые трехфазные электродвигатели. Но одни из них в однофазной сети работают плохо, например двигатели с двойной клеткой короткозамкнутого ротора серии МА, а другие при правильном выборе схемы включения и параметров конденсаторов — хорошо (асинхронные электродвигатели серий А, АО, А02, Д, АОЛ, АПН, УАД).
Мощность используемых электродвигателей ограничивается величиной допустимых токов питающей сети.
Работа трехфазного электродвигателя в однофазной сети и его защита
Работа трехфазного электродвигателя в однофазной сети и его защита
Очень часто возникает необходимость в использовании трехфазных электродвигателей для станков, наждаков и других устройств. Для их питания совсем не обязательно наличие трехфазной сети. Наиболее эффективный способ пуска электродвигателя — это подключение третьей обмотки через фазосдвигающий конденсатор
Для нормальной работы двигателя с конденсаторным пуском , емкость конденсатора должна меняться в зависимости от числа оборотов. Это условие трудно выполнимо, и на практике управляют двигателем двухступенчато. Включают двигатель с пусковой емкостью конденсатора, а после его разгона пусковой конденсатор отключают, оставляя рабочий (рис. 1). Пусковой конденсатор отключают вручную переключателем В 2. Рабочая емкость конденсатора (в микрофарадах) для трехфазного двигателя определяется по формуле если обмотки соединены по схеме «звезда» (рис. 1, а), или если обмотки соединены по схеме «треугольник» (рис. 1,6):
При известной мощности электродвигателя ток (в амперах) можно определить из выражения:
Р-мощность двигателя, указанная в паспорте (на щитке) Вт;
U-напряжение сети. В;
cos-коэффициент мощности;
Конденсатор пусковой С.п. должен быть в 1,5—2 раза больше рабочего Ср. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети, а конденсатор обязательно бумажный, например типа МБГО, МБГП и др. Для электродвигателя с конденсаторным пуском существует очень простая схема реверсирования.
При переключении переключателя В1 (Рис. 1) двигатель меняет направление вращения. Двигатели с конденсаторным пуском имеютособенности. При работе электродвигателя вхолостую по обмотке, питаемой через конденсатор, протекает ток на 20—40% больше номинального. Поэтому при работе двигателя с недогрузкой нужно уменьшить рабочую емкость. При перегрузке двигатель может остановиться, тогда для его запуска необходимо снова включить пусковой конденсатор. Необходимо знать, что при таком включении мощность, развиваемая электродвигателем, составляет 50% от номинального значения.
Все ли трехфазные электродвигатели могут быть включены в однофазную сеть? В однофазную сеть могут быть включены любые трехфазные электродвигатели, но одни из них в однофазной сети работают плохо, например двигатели с двойной клеткой короткозамкнутого ротора серии МА а другие при правильном выборе схемы включения и параметров конденсаторов — хорошо (асинхронные электродвигатели серий А, АО, А 02, Д, АОЛ, АПН, УАД). Мощность используемых электродвигателей ограничивается величиной допустимых токов питающей сети.
Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети. Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.
Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении. Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.
Первый способ (рис. 2). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.
Второй способ (рис 3). Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ ключено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.
Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.
Запуск трехфазных электродвигателей с помощью конденсаторов
Существует масса разнообразных электрических двигателей, но все они имеют две характеристики, основанные на напряжении сети, к которой привязаны они и их мощность. Многие не имеют представления, как подключить двигатель 380 на 220В. Статья раскроет эту тему.
Как подключить электродвигатель 380 на 220?
Существует две схемы такого подсоединения. Каждая имеет свои особенности.
- Звезда-треугольник;
- Конденсаторы.
В хозяйстве иногда возникает потребность подключения к однофазной электросети электрический двигатель, который рассчитан на работу в трехфазной сети. Этот случай считается исключительным, и к нему стоит прибегать только, если нет возможности подключиться к трехфазной электросети, так как в ней сразу создается магнитное вращающееся поле, которое создает условия для вращения ротора в статоре. Ко всему прочему в этом режиме достигается максимальная мощность и эффективность работы электродвигателя.
Если вы подключаете к бытовой однофазной электрической сети, то совершайте три обмотки по схеме «треугольник» для того, чтобы получить наибольшую выходную мощность асинхронного электромотора ( это будет максимум 70%, если сравнивать с трехфазным подключением). Если подключаете схемой «звезда», то максимальная мощность будет достигать 50% от возможной.
Однофазное подключение на два выхода дает возможность подключить фазу и ноль, третьей фазы нет, но она восполняется конденсатором.
Направление вращения электрического двигателя будет зависеть от того, как будет сформирован третий контакт: через фазу или ноль. В режиме одной фазы частота вращения будет идентичной трехфазному режиму. Как подключить двигатель 380 на 220? Какова схема подключения электрического двигателя 380 на 220 В с конденсатором?
Подключение электродвигателя с конденсатором
При подключении маломощных асинхронных электрических двигателей до 1,5 кВт, запускающихся без нагрузки, необходимо иметь только рабочий конденсатор. К нулю подключаем один его конец, другой же к третьему выходу треугольника. Чтобы изменить направление вращения мотора подключение конденсатора ведем не от нуля , а от фазы.
В случае работы двигателя сразу при запуске под нагрузкой или когда его мощность более 1,5 кВт, то для успешного запуска нужно внести в схему пусковой конденсатор, который будет включаться в работу параллельно рабочему. Он нужен для увеличения пускового толчка при старте, он станет включаться всего на несколько секунд.
Обычно пусковой конденсатор имеет кнопочное подключение, остальная же схема подключается от электрической сети через тумблер либо же через кнопку с двумя фиксирующимися положениями. Чтобы произвести запуск требуется подключить питание через тумблер или двухпозиционную кнопку, затем произвести нажатие на пусковую кнопку и удерживать ее до тех пор, пока не запустится электрический двигатель. Как только запуск произошел, отпускаем кнопку, при этом ее пружина разомкнет контакты и произведет отключение пусковой емкости.
Если необходим реверсивный запуск трехфазного двигателя в сети 220 вольт, тогда нужно будет занести в схему тумблер переключения. Он нужен для подключения одного конца рабочего конденсатора к фазе и к нулю.
В случае, если двигатель не желает запускаться либо очень медленно набирает скорость оборотов, то необходимо внести в схему пусковой конденсатор, который подключен через кнопку «Пуск». Для подключения этой кнопки на реверсивной схеме для обозначения проводов используется фиолетовый цвет. Если в реверсе нет необходимости, то со схемы выпадает кнопка вместе с проводами и пусковой правый конденсатор.
Подключение электродвигателя без конденсаторов
Как ни крути, но работать трехфазный электродвигатель будет в однофазной сети на 220 В только с конденсаторами. Они не нужны для запуска электромоторов, которые рассчитаны на работу с напряжением сети в 220 вольт.
Собрать самостоятельно схему подключения не так и сложно. Сложность будет заключаться в подборе необходимой емкости рабочего конденсатора, дополнительные хлопоты возникнут, если потребуется пусковой.
Выбор конденсаторов для электродвигателей
Как подобрать нужные модели? На корпусе находятся обозначения и величина емкости. Заострите внимание только на моделях типа МБГЧ, МБПГ, МБГО, БГТ с рабочим напряжением, которое обозначает (U раб), не менее 300 вольт.
- Чтобы рассчитать рабочую емкость конденсатора для схемы подключения звездой, необходимо использовать формулу Cраб=2800х(I/U). В случае подключения обмоток треугольником, тогда по такой формуле: Сраб=4800х(I/U).
- Для получения результатов по величине в мкФ емкости рабочего конденсатора Сраб, нужно потребляемый двигателем ток (по паспорту) разделить на напряжение сети U, которое равняется 220 вольт, полученные данные умножаются на 4800, если задействован треугольник, или 2800, если работа производилась со звездой.
Экспериментальным способом подбирается емкость пусковых. Обычно их емкость превосходит емкость рабочих в 2-3 раза.
К примеру, есть электродвигатель обмотки, провода которого имеют соединение треугольником, величина потребляемого тока равна 3 амперам. Эти данные подставляем в формулу Сраб= 4800 x (3 / 220)≈ 65 мкФ. При этом пусковой будет иметь пределы в 130-160 мкФ. Но такая емкость редко встречается у конденсаторов, что приводит к параллельному подключению для рабочего, к примеру, шесть по десять плюс один на 5 мкФ.
Учтите то, что расчет составляется на номинальную мощность. Работая в половину силы, электрический двигатель станет нагреваться, поэтому следует уменьшить емкость рабочего конденсатора, чтобы уменьшить ток в обмотке.
При не достающей до требуемой емкости, мощность, развиваемая электрическим двигателем, будет низкой.
Профессионалы рекомендуют начинать подбирать конденсатор для трехфазного двигателя с наименьшего допустимого значения емкости, постепенно увеличивая показатель до оптимального значения.
Помните о том, что если электрический двигатель, переделанный с 380 на 220 вольт, будет долго работать без нагрузки, он сгорит.
Обратите внимание! После отключения конденсаторы на своих выводах достаточно долго сохраняют напряжение опасной величины . Не забывайте следить за соблюдением мер по безопасности: всегда их ограждайте, чтобы исключить случайное прикосновение. Перед эксплуатацией конденсаторов каждый раз не забывайте производить их разрядку.
Всегда помните о том, что не следует подключать трехфазный двигатель, у которого мощность более 3 кВт, к обычной электросети дома на 220В. Это приводит к тому, что начинает происходить выбивание пробок, плавиться изоляция проводов, если неправильно подобрана защита.