Схема реверса с описанием подключения
Схема реверса с описанием подключения
Практически любой электродвигатель можно заставить вращаться как в одну, так и в другую сторону. Это часто необходимо, особенно при конструировании различных механизмов, например, систем закрывания и открывания ворот. Обычно на корпусе двигателя указывается заводское направление движения вала, которое считается прямым. Кручение в другую сторону в этом случае будет реверсивным.
Что такое реверс
Проще говоря, реверс – это изменение направления движения какого-либо механизма в противоположную сторону от выбранного основного. Схему реверса можно получить несколькими способами:
- Механическим
- Электрическим.
В первом случае при помощи переключения шестеренчатых связей, соединяющих ведущий вал с ведомым, добиваются вращения последнего в обратную сторону. По такому принципу работают все коробки передач.
Электрический способ подразумевает непосредственное воздействие на сам двигатель, где в изменении движения ротора принимают участие электромагнитные силы. Этот метод выигрывает тем, что не требует применения сложных механических преобразований.
Для того, чтобы получить реверс электродвигателя, необходимо собрать специальную электрическую схему, которая так и называется – схема реверса двигателя. Она будет отличаться для разных типов электрических машин и питающего напряжения.
Где применяется реверс
Легче перечислить случаи, когда реверс не используется. Практически вся механика построена на передаче крутящего момента по часовой стрелке и наоборот. Сюда можно отнести:
- Бытовую технику: стиральные машины, аудиопроигрыватели.
- Электроинструмент: реверсивные дрели, шуруповерты, гайковерты.
- Станки: расточные, токарные, фрезерные.
- Транспортные средства.
- Спецтехнику: крановое оборудование, лебедки.
- Элементы автоматики.
- Робототехнику.
Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.
Подключение асинхронного мотора 380 В к трехфазной сети в реверс
Схема подключения асинхронника в прямом направлении имеет определенную последовательность подачи фаз A, B, C на контакты двигателя. Ее возможно доработать, например, добавив переключатель, который бы менял местами любые две фазы. Таким способом можно получить схему реверса электродвигателя. В практических схемах такими фазами принято считать B и A.
- Пускатели магнитного типа (КМ1 и КМ2).
- Станция на три кнопки, где два контакта имеют нормально разомкнутое положение (в исходном состоянии контакт не проводит ток, при нажатии на кнопку происходит замыкание цепи), один нормально замкнутый.
Схема работает следующим образом:
- Включением автоматических предохранителей АВ1 (силовая линия), АВ2 (цепь управления) ток поступает на трехкнопочный переключатель и клеммы магнитных контакторов, которые в исходном состоянии разомкнуты.
- Нажатием кнопки «Вперед» ток проходит на катушку электромагнита контактора 1, который притягивает якорь с силовыми контактами. Одновременно при этом происходит обрыв цепи управления контактора 2, его теперь невозможно включить кнопкой «Реверс».
- Вал двигателя начинает вращаться в основном направлении.
- Нажатием кнопки «Стоп» ток в цепи обмотки управления прерывается, электромагнит отпускает якорь, силовые контакты размыкаются, замыкается блокировочный контакт кнопки «Реверс», и ее теперь можно нажать.
- При нажатии кнопки «Реверс» происходят аналогичные процессы только в цепи контактора 2. Вал двигателя будет вращаться в обратную сторону от основного направления.
Подключение мотора 220В к однофазной сети в реверс
Добиться реверса движения вала двигателя в этом случае возможно, если есть доступ к выводам его пусковой и рабочей обмоток. Эти моторы имеют 4 вывода: два на пусковую обмотку, подключенную с конденсатором, два на рабочую.
Если нет информации о назначении обмоток, ее можно получить методом прозвонки. Сопротивление пусковой обмотки всегда будет больше, чем рабочей за счет меньшего сечения провода, которым она намотана.
В упрощенном варианте схемы подключения мотора 220 В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети (без разницы). Двигатель начнет вращаться в определенную сторону. Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки.
Чтобы получить полную рабочую схему включения, необходимо оборудование:
- Защитный автомат.
- Пост кнопочный.
- Электромагнитные контакторы.
Схема реверса и прямого хода в этом случае очень похожа на схему подключения трехфазного мотора, но коммутация здесь происходит не фаз, а пусковой обмотки в одном либо другом направлении.
Схема реверса трехфазного двигателя в однофазной сети
Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами – пусковым и рабочим, на которые коммутируют обе обмотки. От того, куда присоединить третью, зависит кручение вала в ту или иную сторону.
На схеме ниже видно, что обмотка под номером 3 через рабочий конденсатор подсоединяется к трехпозиционному тумблеру, который и отвечает за режимы работы двигателя вперед/назад. Два других его контакта объединены с обмотками 2 и 1.
При включении двигателя нужно придерживаться следующего алгоритма действий:
- Подать питание на схему через вилку либо рубильник.
- Тумблер для переключения режимов работы перевести в положение вперед или назад (реверс).
- Тумблер питания поставить в положение ON (вкл).
- Нажать кнопку «Пуск» на время, не превышающее трех секунд, чтобы произвести запуск двигателя.
Схема подключения двигателя с реверсом от постоянного тока
Моторы, работающие от постоянного тока, несколько сложнее подключить, нежели электрические машины переменной сети. Затруднение состоит в том, что конструкции таких устройств могут быть разными, а точнее разным является способ возбуждения обмотки. По этому признаку различают двигатели:
- Независимого способа возбуждения.
- Возбуждения самостоятельного (бывают последовательного, параллельного и смешанного подключения).
Касаемо первого типа устройств, то здесь якорь не связан с обмоткой статора, они питаются каждый от своего источника. Этим добиваются огромных мощностей двигателей, используемых на производстве.
В станочном оборудовании и вентиляторах применяют моторы параллельного возбуждения, где энергия источника одна для всех обмоток. Электрические транспортные средства построены на основе последовательного возбуждения обмоток. Реже встречается смешанное возбуждение.
Во всех описанных типах конструкций двигателей возможно запустить ротор в противоположном направлении от основного хода, то есть реверсом:
- При последовательной схеме возбуждения роли не играет, где менять направление тока в якоре или статоре – в обоих случаях двигатель будет стабильно работать.
- В других вариантах возбуждения машин рекомендовано задействовать только обмотку якоря в целях реверсирования. Это связано с опасностью обрыва в статоре, скачка электродвижущей силы (ЭДС) и, как следствие, повреждения изоляции.
Запуск мотора схемой звезда-треугольник
При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мотора по схеме звезда-треугольник.
Суть заключается в том, что начало и конец каждой обмотки статора выводят в коробку с клеммами. Управляется схема тремя контакторами. Они поэтапно включают обмотки в звезду, а далее при разгоне двигателя выводят систему на рабочее состояние при подключении треугольником.
Как отличить реверсивный пускатель от прямого
Реверсивный пускатель — более сложное устройство. На самом деле, он состоит из двух обычных прямых пускателей, последние объединены в одном корпусе. Внутренняя схемотехника реверсивного устройства характерна тем, что невозможно запустить одновременно два режима – прямой и реверс. За этот процесс отвечает схема блокировки, которая может быть электрической или механической.
В заключение
Необходимо помнить, что подключать двигатели трехфазного напряжения к сети на 380В дозволено только квалифицированным специалистам, имеющим допуск к работе с высоковольтным оборудованием. Кустарные электрические схемы могут быть причиной возникновения электрических травм!
Как настроить реверс на преобразователе частоты Danfoss
В данной статье будет рассмотренна настройка преобразователя частоты для реверсивного управления электродвигателем:
- Запуск реверса на остановленном электродвигателе
- Изменение направления вращения вала электродвигателя во время работы
Подключение преобразователя частоты
Для ввода преобразователя частоты Danfoss в эксплуатацию необходимо выполнить следующие действия:
- Выполнить монтаж с соблюдением норм безопасности!
- Проверить параметры оборудования (параметры сети, входа питание ПЧ, двигателя)
- Проверить условия установки и эксплуатации преобразователя частоты (отсутствие пыли и влаги, температурный режим и установочные зазоры).
- Электрический монтаж осуществить в соответствии с схемой подключения указанной на рисунке 1
Рисунок 1. Принципиальная электрическая схема подключения преобразователя частоты VLT Micro Drive
Программирование частотного преобразователя
Необходимо установить следующие параметры в преобразователе частоты VLT Micro Drive :
пар. | Параметр | Требуется установить значение |
---|---|---|
14-22 | Режим работы (сброс параметров на заводские) | [2] Initialisation — инициализация, после установки значения выключить и затем включить ПЧ (сбросится в 0). |
1-20* | Номинальная мощность | ## кВт — с шильдика (паспортной таблички двигателя) |
1-22* | Номинальное напряжение | ## В — с шильдика (паспортной таблички двигателя) |
1-23* | Номинальная частота | ## Гц — с шильдика (паспортной таблички двигателя) |
1-24* | Номинальный ток | ## А — с шильдика (паспортной таблички двигателя) |
1-25* | Номинальный скорость | ## Об/мин — с шильдика (паспортной таблички двигателя) |
1-29 | Автоматическая адаптация двигателя | [2] Enable AMT — Для запуска адаптации установите [2] на пульте «Hand on» по завершении — «Ok» Знач. сбросится [0] |
4-12* | Мин. скорость вращения | [0] Гц — в зависимости от применения (реком. для вентиляторов) |
4-14* | Макс. скорость вращения | [50] Гц — рекомендуется установить номинальную скорость |
3-41 | Время разгона | [3] с — зависит от применения |
3-42 | Время замедления | [3] с — зависит от применения |
Проверьте правильность направления вращения механизма, в ручном режиме нажав на панели «Hand on» (далее потенциометром панели или стрелками), по окончании нажмите «Auto on»* | ||
3-15 | Источник задания 1 | [21] — Задание частоты с панели оператора LCP |
3-16 | Источник задания 2 | [0] No function — нет |
Вариант 1 | Запуск реверса на остановленном | электродвигателе |
5-10 | Функция цифр. вх. 18 | [8] — ПУСК |
5-11 | Функция цифр. вх. 19 | [11] — Запуск реверса (не допускается одновременная подача сигналов пуска) |
Вариант 2 | Изменение направления вращения | вала электродвигателя в рабочем состоянии |
5-10 | Функция цифр. вх. 18 | [9] — Импульсный запуск |
5-11 | Функция цифр. вх. 19 | [10] — Реверс (сигнал реверса воздействует только на направление вращения вала, не приводит к запуску двигателя) |
5-12 | Функция цифр. вх. 27 | [6] — Инверсный останов |
Установка магнитного пускателя (схема)
Пускатели магнитные отнесены к наиболее важным элементам большинства электрических схем. С их помощью осуществляется подключение потребителей электроэнергии, дистанционное регулирование нагрузки и иные важнейшие коммутационные переключения. Читайте также статью ⇒ Cхема магнитного пускателя.
- Область применения
- Виды и классификация
- Устройство, преимущества и недостатки
- Принцип работы
- Технические характеристики
- Как читать маркировку?
- Анализ производителей
- Схемы подключения магнитного пускателя
- Инструкция по установке
- Аналоги магнитных пускателей
- Ошибки при установке
Область применения
Магнитные пускатели применяются в схемах электрических цепей для управления приборами или их отдельными блоками, а также силовыми нагрузками. Это устройство — необходимый элемент цепи, так как без него управление или работа будет затруднена или невозможна.
В совокупности с другими устройствами магнитные пускатели могут создавать блок по защите от электрических перегрузок, что во многом облегчает работу и эксплуатацию без участия человека.
Область использования устройств довольно большая. Они применяются для управления:
- асинхронными трехфазными двигателями;
- блоками аварийного выключения;
- станочным оборудованием.
Пускатели магнитные можно встретить в щитках электроприборов бытового использования. Без них работа электрических приборов большой мощности будет невозможной.
Магнитные пускатели Энергия D65А LC1-D65 отличаются высокой эффективностью и простотой эксплуатации
Виды и классификация
Магнитные пускатели имеют очень большой спектр применения, поэтому существует их разнообразные виды.
По назначению магнитные пускатели разделяются на два типа:
- обычные;
- реверсивные.
Их различие состоит в том, что реверсивные пускатели могут изменять фазность, тем самым меняя направление вращения электродвигателей.
Реверсивный магнитный пускатель марки ПМЛ-4560ДМ О*4Б 80А 110В производства компании «Этал»
По уровню защищенности от внешних факторов приборы разделяются на:
- открытые, которые устанавливаются в открытых защищенных шкафах;
- закрытого типа, монтаж которых осуществляется в закрытых шкафах, с возможным проникновением влаги;
Разделяются магнитные пускатели по классу износостойки:
- А — высокая;
- Б — средняя;
- В — низкая.
Устройства разделяются по значению рабочего тока на классы:
- 6,3 А, нулевой;
- 10 – 16 А, первый;
- 25 А, второй;
- 40 А, третий;
- 63 А, четвертый;
- 100 А, пятый;
- 160 А, шестой;
Пускатели могут укомплектовываться вспомогательными элементами такими как:
- тепловые реле
- кнопки пуска и остановки
- ограничители по напряжению.
Устройство, преимущества и недостатки
Конструкция магнитного пускателя состоит из нескольких элементов: корпуса, выполненного из прочного диэлектрического материала, катушки, пружины и блока контактов с подвижной частью сердечника. Катушка и сердечник образуют электромагнит. Эта пара выполняет основную функцию прибора.
К преимуществам пускателей можно отнести:
- общедоступность;
- простой принцип работы;
- возможность управления приборами на расстоянии;
- обеспечение защиты от перегрузок.
У данного устройства есть и некоторые недостатки:
- подключение должно производиться квалифицированным электриком;
- приборы не подлежат ремонту, так как это очень трудоемкий процесс;
- даже во влагозащищенном варианте пускатели не выдерживают прямого попадания воды.
Принцип работы
Принцип работы магнитного пускателя основан на физических свойствах металлов и состоит он в следующем. Когда прибор выключен, группа контактов разъединена, тем самым обеспечивая не прохождение электрического тока. Когда на катушку подается электрическое напряжение, сердечник, выполненный из листов электромагнитной стали, намагничивается и втягивается по внутрь корпуса. Так как он соединен с блоком контактов, вместе с собой он втягивает и их, что обеспечивает надежное прижимание контактной группы. Контакты будут замкнуты до того момента когда ток в катушке перестанет протекать.
Управление магнитным пускателем обеспечивают две кнопки пуска и остановки красного и черного цветов. Красная кнопка — это «пуск» в которой контакты разъединены. Черная кнопка «стоп» выполнена с замкнутыми контактами.
В других случаях, когда необходим реверс, для управления приборами используется три кнопки. Когда прибор необходимо подключить к сети, нажимая кнопку «пуск», контакты замыкаются и тем самым подается напряжение на катушку электромагнита. В корпусе магнитного пускателя есть два контакта, которые при втягивании сердечника замыкаются и по ним постоянно проходит электричество. После отпускания кнопки «пуск» электрическая цепь остается замкнутой, так как магнитный сердечник втянут и по контактам постоянно проходит электрический ток.
Кнопка «стоп» просто разъединяет схему, и сердечник под воздействием пружины выходит в изначальное положение, тем самым происходит отжим контактов.
Технические характеристики
При выборе магнитного пускателя или его замене особое внимание требуется уделять его техническим параметрам:
- максимальному проходящему току;
- допустимому проходящему напряжению;
- напряжению, которое требуется подавать на электромагнит;
- мощности катушки электромагнита;
- наибольшему току вспомогательных контакторов.
Совет №1: Исходя из этих значений, определяются технические характеристики любого магнитного пускателя. Также по ним производится установка в ту или иную электрическую схему.
Как читать маркировку?
При замене или подборе магнитного пускателя необходимо знать и правильно читать его маркировку.
Как правило, в ее начале всегда идут буквы. Они означают серию прибора. Например, МПЛ – магнитный пускатель линейный. После букв идут цифры. Первая означает величину номинального тока. Вторая означает уровень защищенности пускателя. Третья цифра указывает на наличие и назначение теплого реле. Основные параметры указаны отдельно таблицей на самом пускателе.
Анализ производителей
Изготовлением магнитных пускателей занимаются не только компании из стран СНГ, но и ведущие мировые производители. Наиболее востребованные модели представлены в таблице.
Схемы подключения магнитного пускателя
Подключение магнитного пускателя может осуществляться по нескольким схемам.
Схема подключения магнитного пускателя к блоку управления электромотором без реверса
Представленная выше схема является самой распространенной. Ее популярность заключается в простоте подключения. Применяется она в блоках управления электродвигателей без реверса, а также в системах управления.
Схема подключения магнитного пускателя с реверсом для электродвигателей с двусторонним вращением
Эта схема подключения магнитного пускателя с реверсом. Она необходима если подключаемый двигатель должен вращаться в две стороны. Прежде всего, такая схема подключения используется в схемах станков.
Схема подключения магнитного пускателя при наличии теплового реле и автовыключателя
В некоторых случаях магнитные пускатели комплектуются с тепловым реле и защитным автоматом. Такая схема подключения используется в тех случаях, когда подключаемый прибор сильно перегревается или находится в горячей среде. По такой схеме подключаются электродвигатели, тэны водонагревателей.
Инструкция по установке
Установку магнитного пускателя можно осуществить следующим образом.
Для начала требуется отключить электропитание прибора чтобы безопасно его извлечь. На следующем этапе необходимо открутить провода от контактов.
Совет №2: Расположение проводов требуется запомнить, или же лучше всего обозначить чтобы потом прикрутить их в том же самом порядке.
Затем нужно открутить крепежные болты, которые находятся в его нижней части, после чего извлечь магнитный пускатель.
Установка нового прибора проводиться в обратном порядке. Важным моментом является прикручивание проводов. Оно должно быть достаточно сильным, так как плохой контакт может привести быстрому выходу из строя прибора.
Аналоги магнитных пускателей
Подбор аналогичных устройств осуществляется по специальной таблице, имеющейся на сайте каждого производителя. Например, пускателю ПМЕ-011М соответствует прибор ПМ12-010100. Или устройство ПМЕ-131 успешно заменит модель ПМ12-010110.
Ошибки при установке
Основной ошибкой является размещение пускателя в местах, условия которых не соответствуют уровню влаго- и пылезащищенности устройства.
Также при установке часто не учитывается требование, согласно которому мощность устройства должна вдвое превышать мощность электродвигателя в случаях, когда предусматривается работа мотора в режимах торможения или противовключения.
Лекция 11
6.4. Пуск и реверс асинхронных двигателей
При включении асинхронного двигателя в сеть трёхфазного переменного тока, пусковой ток IП = (5÷7)Iном. Такое увеличение тока достигается за счет большой частоты вращающегося магнитного поля статора при неподвижном роторе, имеющим скольжение S = 1. Большая частота магнитного поля статора индуктирует большую ЭДС в цепи ротора, которая создает большой пусковой ток ротора. При увеличении частоты вращения ротора уменьшается скольжение, падает ЭДС и ток в цепи ротора.
Прямой пуск асинхронного двигателя допустим, если мощность двигателя меньше мощности источника питания. Если мощности двигателя и питающей сети соизмеримы, то необходимо использовать средства для уменьшения пускового тока.
Двигатель с фазным ротором (рис.6.11) снабжается трёхфазным пусковым реостатом ПР, который, при пуске двигателя, подключается в цепь ротора. При этом сопротивление фаз ротора увеличивается на величину сопротивлений пускового реостата, подключенных к каждой фазе ротора. При достижении двигателем достаточной частоты вращения пусковой реостат выводится, и ротор становится короткозамкнутым.
Рис.7.11. Электрическая схема пуска асинхронного двигателя с помощью пускового реостата
На рис.6.12 изображены механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата.
Рис.6.12. Механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата
Пуск двигателя начинается с точки 1 с пусковым моментом Мп и происходит по характеристике 1 – 2 при полностью введённом сопротивлении реостата. Как
только двигатель наберёт обороты (точка 2), уменьшают сопротивление реостата и двигатель переходит в режим, соответствующий второй характеристике (точка 3). При этом частота вращения двигателя увеличивается по характеристике 3 – 4. Далее опять уменьшается сопротивление пускового реостата до его закорачивания, частота вращения двигателя переходит на характеристику 5 – 6 и двигатель преобретает номинальную частоту вращения при номинальном моменте вращения.
Пуск в ход асинхронных двигателей с короткозамкнутым ротором осуществляется непосредственным включением в сеть с использованием средств уменьшения пускового тока.
На рис.6.13 изображена схема пуска асинхронного двигателя с помощью реактора. Трёхфазный реактор имеет элементы с реактивными сопротивлениями в каждой фазе. Реактор включается только в момент пуска двигателя, при этом рубильник S2 выключается, а рубильник S1 включает двигатель в сеть.
Пусковой ток при этом плавно возрастает до значения IП = 2Iном, двигатель увеличивает обороты. При достижении номинальных оборотов рубильник S2 включается.
Рис.6.13. Схема пуска асинхронного двигателя с помощью реактора.
На рис.6.14 изображена схема автотрансформаторного пуска асинхронного двигателя.
Рис.6.14. Схема автотрансформаторного пуска асинхронного двигателя.
В момент пуска двигателя включается рубильник S1, и постепенно увеличивают напряжение на двигателе, используя трёхфазный автотрансформатор АТ. После того как ротор двигателя раскрутится, через автотрансформатор АТ подают полное напряжение сети и включают рубильник S2.
На рис.6.15 изображена схема асинхронного двигателя с переключением со звезды на треугольник.
Пуск со звезды на треугольник осуществляется в случае, когда при пуске двигателя его нагрузка не превышает 40% номинальной мощности двигателя, кроме того, подобное переключение требует, чтобы напряжение на фазной обмотке соответствовало линейному напряжению сети.
Рис.6.15. Схема асинхронного двигателя с переключением со звезды на треугольник
Это значит, что если линейное напряжение сети 380В, двигатель подключают в сеть звездой, а, если линейное напряжение сети 220В, то двигатель следует подключать треугольником. В первом и во втором случае на обмотку фаз подается напряжение 220В.
При пуске двигателя рубильником S1 подключют сеть, а переключатель S2 устанавливается в положение “Пуск”. Пусковой ток при этом уменьшается в три раза. Двигатель набирает обороты и при номинальных оборотах переключательS2 устанавливается в положение “Работа”.
На рис.6.16 изображена блок-схема устройства симисторного пуска асинхронного двигателя.
Рис.6.16. Блок-схема устройства симисторного пуска асинхронного двигателя
Симисторы включаются в каждую фазу сетевого напряжения и используют положительный и отрицательный полупериоды переменного тока. Открытие симисторов осуществляется с блока управления БУ путем подачи электрических
ипульсов тока на управляющие электроды. При снятии напряжения с управляющих электродов, двигатель отключается от сети. Смещая по фазе угол импульса тока управления можно изменять сопротивление симисторов или напряжение на двигателе, а, следовательно, и вращающий момент, чем осуществлять плавный пуск двигателя.
На рис.6.17 изображена схема пуска однофазного асинхронного двигателя, имеющего две статорные обмотки, магнитные оси которых располагаются под углом в 90°.
Рис.6.17. Пуск однофазного асинхронного двигателя
Такие машины имеют небольшую мощность до (1÷2) киловатт, их особенность отсутствие пускового момента Мп. Для запуска двигателя необходимы пусковые устройства, к которым можно отнести элементы, имеющие реактивные сопротивления, например конденсатор или катушку индуктивности. На схеме таким пусковым устройством является конденсатор С, который, при пуске двигателя, включается ключом S2 в положение “Пуск”. При достижении двигателем номинальных оборотов конденсатор выключается (положение “Работа”).
На рис.6.18 изображена схема пуска трёхфазного асинхронного двигателя от однофазной сети. При пуске двигателя ключ S2 замыкается на конденсатор С. При достижении двигателем номинальных оборотов, ключ S2 размыкается.
Реверсом называют изменение направления вращения электрической машины.
Направление вращения асинхронного двигателя зависит от порядка следования фаз питающего напряжения.
Рис.6.18. Схема пуска трёхфазного асинхронного двигателя от однофазной сети
На рис.6.19 изображены векторные диаграммы прямого и обратного следования фаз статорных обмоток, соединенных звездой, а также указаны направления вращения электрической машины.
Рис.6.19. Векторные диаграммы прямого и обратного следования фаз
питающего напряжения, поясняющие реверс асинхронного двигателя
Существует несколько способов управления пуском, реверсом и остановкой асинхронных двигателей.
На рис.6.20 изображены схемы управления асинхронным двигателем с помощью переключателя S и магнитного пускателя МП. Реверс и остановка двигателя при управлении магнитным пускателем осуществляется кнопками “Вперед”, ”Назад” и ”Стоп”, управляющими контакторами В и Н, которые имеют силовые контакты и контакты цепи управления, осуществляющих блокировку одновременного включения контакторов.
Рис.6.20. Схемы управления асинхронным двигателем с помощью переключателя и магнитного пускателя
Асинхронные двигатели большой мощности останавливают электроторможением методами противовоключения и рекуперации. При торможении противовключением производится переключение двух фаз статора, изменяется направление вращения магнитного поля статора, скольжение становится больше единицы, и ротор двигателя останавливается. Рекуперативное торможение производится при переводе двигателя в генераторный режим. При этом частота вращения ротора становится больше частоты вращающегося поля статора, скольжение становится меньше нуля, происходит торможение и остановка машины.