Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реверсивное управление приводом

Реверсивное управление приводом

Нередко, к функционалу систем управления трехфазными двигателями предъявляются дополнительные требования, обусловленные, как правило, особенностями технологических процессов, в которых участвует электропривод. К типичным примерам такого расширения функционала можно отнести реверсирование электрических двигателей – возможность изменять направление вращения последних.

Изменение направления движения вала трехфазного асинхронного электродвигателя осуществляется изменением порядка подключения питающих фаз к его статорным обмоткам Любой грамотный электрик знает: для пуска вала «асинхронника» в обратную сторону, достаточно в клеммной коробке поменять два любых питающих фазных проводника местами.

Понятно, что при эксплуатации электродвигателя в режимах с частыми оперативными переключениями направления вращения вала, такой способ на практике неприменим. Распространенным решением изменения порядка подключения фаз является способ с использованием двух магнитных пускателей (см. схему).

Изменение очередности подключения питающих двигатель фаз осуществляется переключением его электропитания. Нажатие «пусковой» кнопки SB1 замкнет питающую цепь катушки KM1, в результате чего вызовет срабатывание этого пускателя. Таким образом, порядок подключения питающих фазных проводников к электродвигателю будет следующим: L1, L2, L3, что будет соответствовать определенному направлению его вращения.

Остановка двигателя кнопкой SB3 прервет цепь питания катушки и возвратит группу главных контактов в исходное (отключенное) положение. Нажатие кнопки SB2, подобно KM1, замкнет цепь питания катушки KM2, что вызовет втягивание силовых контактов второго пускателя.

По схеме нетрудно отследить, что фазировка питания электродвигателя от этого магнитного пускателя будет несколько иной – L3, L2, L1, что соответствует противоположному направлению вращения; изменение направления, в данном случае, было достигнуто заменой питающих L1 на L3 и наоборот.

Оба магнитных пускателя подключены по схожей стандартной схеме управления приводом, прерывание питающей цепи обеих катушек пускателей осуществляется размыкающими контактами кнопки «Стоп» (SB3).

При внимательном рассмотрении схемы видно, что одновременное срабатывание обоих магнитных пускателей вызовет междуфазное замыкание в силовой питающей цепи нагрузки (встречное включение L1 и L3) и приведет к аварийному режиму работы электропривода. Поэтому, для исключения подобных последствий, в схеме предусмотрена защита от таких возможных ошибочных одновременных включений.

Так, втягивание якоря и главных контактов KM1 разомкнет питающую цепь катушки KM2 – в эту цепь последовательно включен нормально закрытый (Normal Close, маркировка «NC») блок-контакт KM2. Таким образом, при нажатии «пусковой» кнопки SB2, срабатывание KM2 гарантированно не произойдет. Аналогичная блокировка включения KM1 предусмотрена и при срабатывании KM2 – питание катушки последнего осуществляется через NC блок контакт KM1.

Современными производителями, в настоящее время выпускаются реверсивные магнитные пускатели, имеющие механическую блокировку таких одновременных ошибочных включений двух, что, однако не делает предложенную и не уступающую в надежности данную схему невостребованной.

На практике, нередко требуется использование реверсивных пускателей с определенными техническими характеристиками и, наличие (отсутствие) «родной» механической блокировки, предусмотренной изготовителем, при использовании описанного способа, уже не ограничит в выборе нужной модели.

Управление трехфазным двигателем в однофазной сети (PS11036, IRPT2060A, IR2130)

В области силовых приборов “законодателями» являются фирмы INTERNATIONAL RECTIFIER — сокращенно IR и MITSUBISHI Electric — сокращенно ME, а также INFENION Technologies — IT.

Я привожу наименование фирм-изготовителей для того, чтобы пользователи могли ориентироваться при выборе элементов. Так как, в основном, только эти фирмы занимаются разработкой элементной базы для силовых приводов.

Данная статья поможет многим радиолюбителям применить современные силовые электронные приборы для управления 3-х фазными электродвигателями в однофазной сети.

Схема

На рис. 1 приведена схема электрическая принципиальная электронного привода электродвигателя. Устройство работает следующим образом.

Рис. 1. Схема управления трехфазными двигателями с помощью силовой электроники в однофазной сети.

Задающий генератор DD1 серии NE555 вырабатывает импульсы частотой 360 Гц, поступающие на вывод 9 DD2 (счетный вход) 55БТМ8 (аналог 74175N — четыре D-триггера). В микросхеме используются три D-тригг*ра в качестве схемы, сдвига.

То есть, с их прямых и инверсных выходов выходит трехфазное напряжение управления частотой 60 Гц, которое подается на соответствующие входы микросхемы DA3 IR2130S.

Чтобы электронный привод работал на различных частотах, нужно резистор R2 номиналом 100 кОм заменить на цепочку из постоянного 62 кОм и переменного 56 кОм резисторов.

Микросхема DA3 IR2130S представляет собой шестиканальный высоковольтный драйвер (схема управления) управления выходными ключами фирмы IR. При нажатии на кнопку S1 “Пуск» драйвер управляет как верхними ключами, так и нижними.

Транзисторы VТ1, VТ2, VТ3 — верхние ключи, соответственно VТ4, VТ5, VТ6 — нижние ключи. Питание схемы осуществляется таким образом.

Трансформатор Т1 понижает напряжение сети до 18 В, которое выпрямляется мостом VDS2 и фильтруется конденсаторами С3, С6. Выпрямленное напряжение поступает на стабилизатор DA2 7815.

С выхода DA2 напряжение +15 В служит для питания микросхемы DA3 IR2130. Напряжение +15 В понижается стабилизатором DA1 7805 (КРЕН5) до 5 В, необходимого для питания микросхем DD1, DD2.

Рис. 2. Схема генератора на микросхеме.

Рис. 3. Установка дополнительного резистора.

Рис. 4. Схема драйвера.

Внимание! Минусовой провод на схеме показан как “общЕго ни в коем случае нельзя соединять с корпусом прибора. Он должен быть надежно изолирован от корпуса. Сам корпус привода и электродвигатель должны быть надежно заземлены.

При работе с устройством надо соблюдать осторожность, чтобы избежать поражения электрическим током!

Детали

Мост VDS1 должен быть рассчитан на прямой ток 20. 25 А и обратное напряжение 400 В. Данные параметры зависят от мощности используемого двигателя. Я рассчитывал на мощность 1.5. 2 кВт.

Читать еще:  Греется двигатель причины пежо 307

Подходящим является мост КВРС2504 — Іпр. = 25 А и LJo6p. = 400 В. Примененный мост можно, конечно, заменить отечественными мощными диодами, установив их на радиатор, но опять же габариты схемы увеличатся.

Мост VDS2 рассчитан на Uo6p. = 400 В и Іпр.=1 А, например, КЦ405. Диоды VD1, VD2, VD3 должны быть быстродействующими, с ІІобр. не менее 400 В, например, 11DF4 или 10DF6.

Резисторы R6, R8, R10, R12, R13, R14 номиналом 100 Ом, R7, R9. R11 — номиналом 47 Ом. Защитные диоды VD4. VD9 — быстродействующие, с ІІобр. не менее 400 В и выдерживающие прямой импульсный ток более 30 А, например, MUR680.

Но можно обойтись и без защитных диодов — для этого нужно применить выходные ключи VТ1 . VТб с защитными диодами, встроенными в корпуса транзисторов.

Особое внимание следует обратить на выходные ключи VТ1 . VТ6 — это транзисторы технологии IGBT — по входу полевой транзистор, т.е. затвор, а по выходу коллектор и эмиттер — это в первом приближении.

То есть IGBT — это смесь полевой и биполярной технологии. Такие транзисторы производят фирмы Infineon: BUP311D, BUP313D, Harris: HGTH20N40C1D, IR: IRG8C30D, IRGBC2GD с защитными (обратны* ми) диодами.

Рис, 5. Схема силового привода с использованием модуля фирмы MITSUBISHI SEMICONDUCTOR PS11036.

Все резисторы на схеме мощностью 0,25 Вт, кроме R15 — проволочный (падение напряжения на кем должно быть не более 0,5 В). Суммарная емкость конденсаторов после выпрямления сетевого напряжения должна быть около 1000 мкФ при нагрузке 2 кВт и более.

На схеме указаны номиналы С7 и С8 по 330 мкФ для случая нагрузки 1,5 кВт. Конденсаторы C10, С11, С12 номиналом 0,1 мкФ обязательно должны быть с малыми диэлектрическими потерями и термостабильными, рассчитанными на напряжение 50 В.

Трансформатор Т1 — мощностью не более 10 Вт. Если возникли трудности с приобретением DD1 NE555, ее можно заменить мультивибратором, собрав на отечественной 555-й серии.

Схема такого генератора показана на рис. 2. Тактовая частота будет определяться формулой:

  • С1. Фарад
  • R, Ом.

Такой генератор будет работать в диапазоне 45 Гц . 25 кГц. Если такой широкий диапазон генерирования не нужен, то вместо переменного резистора R1 номиналом в 510 Ом нужно установить цепочку из резистора номиналом 100 Ом и 470 Ом (рис.

3). Выходные ключи VТ1. VТ6 обязательно надо установить на теплоотвод через электроизоляционные теплопроводные прокладки (подойдет слюда от больших конденсаторов), иначе у конструктора возникнут трудности с теплоотводом и электроизоляцией.

Фирма JR об этом позаботилась и разработала силовые модули в широком ассортименте. В частности для однофазной сети были разработаны модули типов IRPT2060A на мощность нагрузки 2,2 кВт и IRPT2064A на мощность нагрузки 1,5 кВт (рис. 4).

В модуле, кроме силовых ключей, еще установлены силовой мост, токоизмерительные шунты (выводы IS1, IS2 и IS3, IS4) для IRPT2060A номиналом по 25 мОм (для IRPT2064A — номиналом по 45 мОм), терморезистор (выводы RT1 и RT2), имеющий значение 50 кОм ±5% при температуре модуля 25°С и 3,1 кОм при температуре 100°С для обоих модулей. В модуле еще установлен ключ (выводы BR и N). Он такой же мощный, как и шесть ключей, и предназначен для аварийного отключения модуля.

Я не стал с ним экспериментировать. Все ключи изолированы от корпуса модуля так, что отпадает проблема надежной теплоизоляции, хотя и в этом случае она не помешает при длительной работе модуля.

На рис. 5 приведена схема силового привода с использованием модуля фирмы MITSUBISHI SEMICONDUCTOR PS11036 мощностью 2,2 кВт. Эта схема самая простая в управлении.

Правда, модули такого типа для однофазной сети я не смог найти. Но ведь можно включит и таким образом, как показано на схеме. Вывод FO — выход сигнала об аварии.

Вывод Vamp — напряжение, усиленное в 10 раз с токового резистора нагрузки. Диапазон изменения напряжения на выходе Vamp составляет 0. 5 В.

К нему можно подключить, например, вольтметр и измерять косвенно ток в нагрузке. Еще хочу напомнить, что на схеме минусовый провод показан как общий, но его ни в коем случае нельзя соединять с корпусом устройства.

В. Хрипченко. пос. Октябрьский Белгородской обл. РМ-07-17.

Схема управления асинхронным электродвигателем

Рассмотрим весьма распространенную схему управления асинхронным двигателем при помощи магнитного пускателя.

Устройство однофазного асинхронного двигателя.

На рис.1 приведена схема управления без возможности изменения направления вращения (реверсирования). Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле.

Проследим устройство и работу вначале силовых (главных) цепей, а затем цепей управления.

Рисунок.1 Схема управления асинхронным короткозамкнутым двигателем при помощи нереверсивного магнитного пускателя.

Силовые цепи. Трехфазный ток к статору электродви­гателяД поступает через трехполюсный рубильник Р. Рубильник дает возможность отключить электродвигатель в случае ремонта или выхода из строя магнитного пускателя. Далее в силовой цепи находятся предохранители 1П, которые помещаются обычно на групповом распределительном щитке; они защищают цепи от корот­ких замыканий. Главные контакты Л трехполюсного линейного контактора включают или отключают обмотку статораэлектро­двигателя. Подключены главные контакты таким образом, чтобы подвижные контакты располагались со стороны двигателя, а неподвижные, всегда находящиеся под напряжением, – со стороны сети, такое подключение повышает безопасность обслуживания. Тепловые реле включаются в две фазы, так как чрезмерно большой ток возможен не менее чем в двух проводах, они служат для защиты двигателя от длительных перегрузок и от работы на двух фазах.

Читать еще:  Что такое мрт двигателя

Применение в схеме наряду с тепловыми реле плавких предо­хранителей объясняется тем, что силовые контакты магнитных пускателей допускают разрыв токов перегрузки не больше семи­кратной величины номинального тока электродвигателя, мощность которого допустима в данном пускателе; а на разрыв токов корот­кого замыкания эти контакты не рассчитаны. В силовую цепь включаются нагревательные элементы реле.

Цепи управления. Питание цепи управления осущест­вляется здесь через рубильник и предохранители главной цепи. Кроме того, цепи управления защищены своим одним предохра­нителем 2П, он защищает цепь управления от коротких замыканий. Как видно из схемы, цепь управления питается напряжением такой же величины, что и силовая цепь.

В цепь управления включены кнопки «стоп» и «пуск».

Рисунок 2 Схема управления асинхронным короткозамкнутым двигателем с возможностью реверсирования.

Катушка Л линейного контактора с блок-контактном Л1 при помощи своих главных контактов Л в силовой цепи осуществляет включение и отключение электродвигателя Д. Далее в цепь управ­ления включены размыкающие контакты (с ручным возвратом) тепловых реле 1РТ и 2РТ, нагревательные элементы которых включены в главную цепь. У некоторых типов тепловых реле име­ются два нагревательных элемента и только один размыкающий контакт, на который может воздействовать посредством рычажной системы каждая из биметаллических пластин.

Схема работает следующим образом. Для пуска двигателя пос­ле включения рубильника Р следует нажать кнопку «пуск». При этом замыкается цепь катушки контактора Л. Ток идет по следую­щей цепи: фаза Л1 – предохранитель – размыкающая кнопка «стоп» – кнопка «пуск» – катушка контактора Л – размыкающие контакты тепловых реле 1РТ и 2РТ – фаза Л3. Вследствие того, что по катушке контактора проходит ток, сердечник ее намагни­чивается, якорь втягивается и включает главные контакты. Вы­воды обмотки статора С1C2С3 присоединяются к сети питания Л1, Л2, Л3, и двигатель включается. Одновременно с главными контактами замыкаются и блок-контакты так, что цепь катушки контактора замыкается через блок-контакт Л1 шунтирующий кнопку «пуск». Теперь уже не нужно больше удерживать кнопку в нажатом состоянии; за счет действия пружины она возвращается в исходное положение. Для отключения двигателя следует нажать кнопку «стоп»; при этом питание катушки контактора Л преры­вается, и главные контакты под действием веса или пружины размы­каются и отсоединяют обмотку статора от сети.

Статор трехфазного асинхронного двигателя.

Рассмотренная схема осуществляет и так называемую «нуле­вую» (или минимальную) защиту: при исчезновении или значительном снижении напряжения сети до 35—40% номинального значения контактор отключается и отключает электродвигатель от сети.

При восстановлении напряжения самопуска двигателя уже не произойдет, так как кнопка «пуск» отпущена, а блок-кон­такт Л1 разомкнут.

В случае длительной перегрузки размыкающий контакт тепло­вого реле 1РТ (2РТ) отключает контактор, а следовательно, и двигатель. После действия реле тепловой защиты (если тепловое реле выполнено по принципу принудительного возврата) для воз­врата контакта реле в исходное положение следует нажать на кноп­ку, которая помещается на крышке пускателя; возврат контактов реле 1РТ (2РТ) после отключения возможен только через время, необходимое для того, чтобы биметаллические пластинки остыли.

Магнитные пускатели изготовляются для управления электродвигателями до 75—100 кВт. Рассмотренная схема может быть собрана также и с контактором. Для асинхронных двигателей напряжением до 500 В обычно применяются трехполюсные контак­торы переменного тока серии КТ с катушкой переменного тюка.

Асинхронный двигатель с фазным ротором.

Для управления механизмами, требующими изменения направления вращения (реверсирования), применяется либо реверсив­ный магнитный пускатель, либо схема управления с двумя контак­торами, мало отличающаяся от схемы реверсивного пускателя.

На рис. 2 приведена схема управления асинхронным корот­козамкнутым двигателем с возможностью реверсирования. Как и схема управления с магнитным пускателем, данная схема допускает дистанционное управление, так как кнопки управления, которых в этой схеме три – «вперед», «назад» и «стоп», можно поместить на некотором расстоянии от двигателя. При помощи схемы, изо­браженной на рис. 2, можно пустить двигатель (и, следова­тельно, связанный с ним механизм), изменить направление вра­щения, остановить его; кроме того, схема осуществляет защиту установки от коротких замыканий, от перегрузки, от падения напряжения в сети (нулевая защита) и от самопуска. В этой схеме совмещаются две схемы нереверсивного пуска и имеются некоторые особенности. Схема снабжена двумя контакторами: контактором «вперед» (катушка и ее три главных контакта обозначены буквой В, а блок-контактыB1и В2) и контактором «назад» (катушка и три главных контакта обозначены буквой Н, а блок-контакты H1 и Н2). Главные контакты контакторов В и Н включены в силовую цепь таким образом, что когда замыкаются контакты В (контакты Н при этом разомкнуты), на обмотку статора подаются три фазы сети в одном порядке, а когда замыкаются контакты Н, две фазы из трех меняются местами. В связи с этим магнитное поле статора двигателя начинает вращаться в обратную сторону, и двигатель реверсируется.

Действительно, при включении контактов В фаза Л1 сети по­дается на обмотку статора С1, фаза Л2 – на С2, фаза Л3 – на С3. Если же замыкаются контакты Н, то фаза Л1 подается на об­мотку С3, фаза Л2 – на С2 (без изменения), фаза Л3 – наС1, следо­вательно, фазы Л1 и Л3 меняются местами.

Читать еще:  Что такое dhv на двигателе

Схема работает следующим образом. Для включения двига­теля в направлении «вперед» нажимается кнопка «вперед»; при этом ток от фазы Л2 идет по цепи: 135 – 7 – 6 – 42 – фаза Л3; катушка В замыкает свои главные контакты В, и двигатель вклю­чается на движение «вперед». Для изменения направления враще­ния включается кнопка «стоп», а затем включается кнопка «назад»; при этом ток идет по цепи: фаза Л2 – 1 – 3 – 9 – 11 – 6 – 4 – 2 – фаза Л3. Теперь ток уже идет по катушке Н, которая замы­кает свои контакты, и двигатель реверсируется. Одновременное включение обоих контакторов в рассмотренной схеме может при­вести к короткому замыканию в силовой цепи. Если двигатель включить в направлении, например, «вперед» и по ошибке нажать кнопку «назад», то катушка Н также включит свои контакты (кон­такты В были включены ранее, поскольку двигатель работал в направлении «вперед»), в силовой цепи окажутся включенными все шесть главных контактов, что приведет к короткому замыканию в двух фазах 1 и Л3). Чтобы этого не произошло, в схеме при­меняются двухцепные кнопки «вперед» и «назад»; при нажатии кноп­ки «вперед» одновременно размыкается контакт в цепи катушки Н, и наоборот, если нажать кнопку «назад», то размыкается кон­такт катушки В. Это устройство называется механической блоки­ровкой. Для увеличения надежности работы схемы механической блокировкой снабжаются также якори катушек контакторов, которые имеют специальный рычаг: втягивание якоря одной ка­тушки делает невозможным одновременное втягивание якоря второй катушки.

Кроме механической применяется также электрическая бло­кировка. На рис. 2 кнопки управления «вперед» и «назад» обычные; однако в цепь катушки «вперед» включен размыкающий контакт контактора «назад», и наоборот, в цепь катушки «назад» включен размыкающий контакт контактора «вперед». Если нажать, например, кнопку «назад», то ток пройдет по катушке контактора «назад», контактор замкнет свои замыкающие контакты и разомк­нет свой размыкающий контакт Н2 в цепи катушки В. Следователь­но, пока включена катушка контактора Н, цепь катушки контак­тора В будет разомкнутой, и включить катушку В одновременно с катушкой Н невозможно. Это устройство называется электриче­ской блокировкой. Для увеличения надежности работы схемы одно­временно с электрической применяют механическую блокировку.

Управление электродвигателем схема

Там, где требуется плавное и точное регулирование скорости и вращающего момента электромотора в широких пределах, необходима схема управления двигателем постоянного тока

В основе этой радиолюбительской разработки лежит принцип работы следящего привода с одноконтурной системой регулирования. Схема конструкции состоит из следующих основных частей: — СИФУ, Регулятор,Защита

Оно может быть использовано для управления однофазными асинхронными двигателями, в частности, для пуска и торможения асинхронного двигателя с короткозамкнутым ротором малой мощности, имеющего пусковую обмотку или пусковой конденсатор, отключаемые до окончании пуска. Возможно использование устройства для пуска более мощных АД, а также для пуска трехфазных двигателей, работающие в однофазном режиме.

В другой простой схеме для управления однофазным асинхронным двигателем для пуска и торможения применяется электромагнитное реле, пусковой конденсатор типа МБГО-2 или МБГЧ, который включается и выключается контактами реле

Асинхронные однофазные электромоторы с пусковой обмоткой широко применяются в электроприводах различной бытовой техники (стиральные машины. компрессорные агрегаты холодильников), их используют для своих нужд радиолюбители.

Обладая известными достоинствами, такие электродвигатели требуют применения дополнительного устройства, обеспечивающего автоматическое подключение пусковой обмотки при включении, а также при остановке работы в случаях чрезмерного кратковременного увеличения нагрузки.

Многие радиолюбители нередко пытаются использовать трехфазный электродвигатель для различных радиолюбительских самоделок. Но вот беда — не каждый знает, как подключить трехфазный двигатель к однофазной сети. Среди различных способов запуска наиболее простой с подключением третьей обмотки через фазосдвигающий конденсатор, но не все двигатели хорошо работают от однофазной сети.

В радиолюбительской практике все нестандартные способы хороши, и так как у нас, руки развязаны, то и маломощные двигатели можно реверсировать переключателем ТП1 от старых ламповых телевизоров второго класса

Эта радиолюбительская разработка предназначена для регулировки и поддержания стабильной частоты вращения низковольтного двигателя мощностью от единиц ватт до 1000 ватт при U не более 20V. В качестве датчика частоты вращения используется датчик электронной системы зажигания автомобиля ВАЗ

Схема регулятора оборотов двигателя постоянного тока работает на принципах широтно-импульсной модуляции и применяется для изменения оборотов двигателя постоянного тока на 12 вольт.

Регулирование частоты вращения вала двигателя при помощи широтно-импульсной модуляции дает больший КПД, чем при применение простого изменения постоянного напряжения подаваемого на двигатель, хотя эти схемы мы тоже рассмотрим

Рассмотрена простая схема контроллера шагового двигателя, управляющая шаговым двигателем с помощью параллельный порт компьютера.

Шаговый двигатель используется для изготовлении печатных плат, микродрели, автоматической кормушки и в конструкциях роботомеханизированных аппаратов.

Обычно регулирование оборотов для двигателей на 220 вольт осуществляют с помощью тиристоров. Типовой схемой считается подсоединение электродвигателя в разрыв анодной цепи тиристора. Но во всех подобных схемах должен быть надежный контакт. И поэтому их нельзя применить в регулировании частоты вращения коллекторных двигателей, так как механизм щеток искусственно создает небольшие обрывы цепи.

Асинхронный электродвигатель нашел свое применение благодаря своей надежности, простоте и дешевизне. Чтобы продлить срок его эксплуатации и улучшить его параметры, необходимы дополнительный устройства, которые позволяют запускать регулировать и даже защищать двигатель.

Ссылка на основную публикацию
Adblock
detector