Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая Схема Управления

Электрическая Схема Управления

Если реверсирование двигателя выполняется двумя нереверсивными магнитными пускателями, то роль электрической блокировки играют контакты КМ и КМ, а механическая блокировка обеспечивается кнопками SВ2 и SВ3, каждая из которых состоит из двух контактов, связанных между собой механически.


Ротор короткозамкнутого асинхронного двигателя. Схема придет в исходное положение и будет готова к последующей работе.

Для уменьшения пусковых токов в режиме пуска в цепь якоря включены резисторы R1—R4. Цепи управления не показаны.
РАЗБОР ПРОСТОЙ СХЕМЫ — Читаем электрические схемы 2 ЧАСТЬ

После реализации его выдержки времени это реле отпускает свой якорь и замыкает свой контакт РУ2 — включается контактор У2 и резистор R2—R3 выводится из цепи якоря электродвигателя.

Магнитные пускатели бывают нереверсивные и реверсивные. Реостатный пуск асинхронного двигателя с кз ротором.

Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения.

Обычно реверсивный магнитный пускатель состоит из двух контакторов, заключенных в один корпус.

В четвертом положении контроллера контактор О отключается.

Электрическая схема управления в Visio

Реостатный пуск асинхронного двигателя с кз ротором.

Полупроводниковые приборы. Первым этапам разработки схемы является работа со справочниками, в которых пускорегулирующая аппаратура и сечение проводов подбирается в зависимости от типа и мощности двигателя, его назначения и условий его работы. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. Это позволяет проводить смену инструмента, наладку станка с легким поворотом приводного вала и ротора электродвигателя.

Ротор короткозамкнутого асинхронного двигателя.

Наружная часть муфты, называемая якорем, выполняется в форме массивного цилиндра из малоуглеродистой стали. Схема последовательного включения двигателей Пример 5.

Нагревательные элементы теплового реле, включённые в силовую цепь, и остающиеся размыкающие контакты с ручным возвратом этого же реле в исходное положение, которые находятся в цепи управления, обозначены буквами РТ.

Частоту вращения электродвигателя можно изменить несколькими способами.

Управлять асинхронным двигателем можно и с большего числа мест Рисунок 5 — Схема управления электродвигателем с двух мест при наличии соответствующего количества кнопочных станций Рисунок 6 — Схема управления асинхронным двигателем с помощью реверсивного магнитного пускателя: а — силовая цепь; б — цепь управления с электрической блокировкой контактами магнитного пускателя и контактами кнопочной станции; в — цепь управления с электрической блокировкой контактами магнитного пускателя Реверсивные магнитные пускатели комплектуются из двух нереверсивных.

Вращение электродвигателя прекращается.
Схема управления двигателем с двух и трех мест

Нереверсивная схема управления асинхронного двигателя.

В электросхемах насосных станций широко применяются магнитные пускатели и автоматы, контакторы и электродвигатели насосов, устройства сигнализации, кнопки управления, устройства защиты от перенапряжений, прочая аппаратура. Время срабатывания отключение выключателя составляет 0, 0,05с.

Запуск насосного агрегата осуществляется реле уровня РУ. Он имеет подвижные замыкающие и размыкающие контакты. Например, в каждом биполярном транзисторе имеется минимум три вывода — база, коллектор и эмиттер.

При срабатывании расцепителя приводится в действие механический выключатель и происходит разрыв силовых контактов. Отпускание якоря приводит к отключению электродвигателя. После предварительного соединения обмоток статора производится пуск двигателя при помощи контакторов K1 и К2 для вращения вперед или назад.

Контактор К отпустит свой якорь, и его разомкнувшийся контакт К отключит электродвигатель от питания. Контактор К1 включает статор двигателя и тормозной электромагнит в сеть. Такой пускатель состоит из двух простых пускателей, подвижные части которых между собой связаны механически с помощью устройства в виде коромысла. Во втором положении замыкается контакт S1 — 3 командоконтроллера и включается контактор КЗ, который закорачивает часть сопротивления реостата.

Все контакторы ускорения У1, У2, У3 обесточены, их контакты разомкнуты, поэтому в цель якоря включены пусковые резисторы R1—R4. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Применение шунтирующего тиристора, замыкающего цепь тока между двумя фазами, приводит к увеличению постоянной составляющей тока, что создает достаточный тормозной момент в области высокой угловой скорости.

Поиск по блогу


Схема последовательного включения двигателей Пример 5. Это достигается применением механической или электрической блокировки.

Контактор К1 включает статор двигателя и тормозной электромагнит в сеть. Контакторы переменного тока выполняются трёхполюсными, они состоят из электромагнитной системы контактного и дугогасительного устройства. К- кнопка управления, Л-контактор, РТ-реле тепловое, Д- двигатель.

В схемах управления электродвигателями применяются автоматы с электромагнитными расцепителями либо с расцепителями электромагнитным и электротепловым. Изменение тока статора Iи частоты вращения ротора n2во время пуска электродвигателя показано на рис.
Нереверсивная схема магнитного пускателя

Автоматическое управление

При распространении материала используйте пожалуйста ссылку на наш блог!

Треугольник является анодом, а черточка — катодом. Пускатель КМ2 включается и реверсирует двигатель М.

Для этих целей используются автотрансформаторы с плавным регулированием напряжения, магнитные усилители, тиристорные регуляторы напряжения. При перегрузках в режиме ручного или автоматического управления срабатывает одно из тепловых реле РТ1 или РТ2, что приводит к отключению электродвигателя. Ho для устранения возможности короткого замыкания между первой и третьей фазой силовой цепи от одновременного включения обоих пускателей применяют двухцепные кнопки.

З — закроется. Вторая группа элементов преобразует электричество в другие виды энергии. Контактор К отпустит свой якорь, и его разомкнувшийся контакт К отключит электродвигатель от питания. Для пуска электродвигателей большей мощности применяют пусковые рис.

При такой схеме, например, включение второго двигателя М2 рис. Вторая группа элементов преобразует электричество в другие виды энергии.

Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Если реверсирование двигателя выполняется двумя нереверсивными магнитными пускателями, то роль электрической блокировки играют контакты КМ и КМ, а механическая блокировка обеспечивается кнопками SВ2 и SВ3, каждая из которых состоит из двух контактов, связанных между собой механически. Для осуществления торможения двигателя нажимается сдвоенная кнопка SВ2, размыкающий контакт которой разрывает цепь питания катушки контактора КМ1. У автоматических выключателей на изображении указывается тип расцепителя.

При вращении двигателя, например вправо, горит лампа HL1, включаемая контактом KM1. Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Во втором положении замыкается контакт S1 — 3 командоконтроллера и включается контактор КЗ, который закорачивает часть сопротивления реостата. Воздушный зазор между индуктором и якорем составляет всего 1 мм.

При уменьшении уровня жидкости в баке контакты КК размыкаются, насос останавливается. Схема автоматического управления в функции давления Переключение осуществляется одним переключателем, имеющим контакты Kl, К2, К3. Все составные части и условные обозначения элементов электрической цепи отображаются графически. Тепловое реле — аппарат многократного действия, обеспечивающий защиту электрооборудования от недопустимого перегрева, вызванного длительной перегрузкой.
Как читать электрические схемы

Реверсивная схема подключения магнитного пускателя

Приветствую вас, уважаемые читатели сайта elektrik-sam.info!

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

Читать еще:  114 двигатель ваз характеристики

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД ;

2) нормально-разомкнутой кнопки НАЗАД ;

3) нормально-замкнутой кнопки СТОП .

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение , его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД . Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД .

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД , она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП . Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП . Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД .

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД . Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД . Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП . Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП , схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Схема подключения трехфазного двигателя через пускатель

Любой электрический прибор имеет устройство для его подключения к электросети, будь то чайник, кофемолка или более сложный механизм. Это может быть как простое устройство, так и более сложное. Порой, если оно вышло из строя, необходимо заменить его либо самому собрать для электроприбора.

  • Способы подключения
    • Через реле
    • Магнитный пускатель
    • Использование контактора
  • Особенности подключения трехфазного двигателя
  • Возможные неисправности

Способы подключения

В чем может быть сложность подключения? Необходимо обеспечить безопасность пользователей от поражения электрическим током или пожара, сохранность самого прибора от полного или значительного повреждения при его неисправности. По принципам, которые используются в этих устройствах, их можно разделить на:

  • электронные;
  • электромеханические.

Электронные аппараты полностью состоят из приборов, в которых не используется механическая, мускульная сила. Для коммутации в них используются транзисторы и тиристоры. Такие устройства полностью автоматизированы. Они отличаются быстродействием, отсутствием шума. В них не возникают искры или электрическая дуга. По размерам они значительно меньше электромеханических. Также они выигрывают по весу и, что немаловажно, по цене.

Тем не менее электромеханические устройства еще широко используются. Пожалуй, единственным преимуществом у них является сравнительная простота. Если их классифицировать по разъединяемому току, то можно выделить три группы:

  • реле;
  • пускатели;
  • контакторы.

Через реле

Реле — самые маломощные, работают с малым током и напряжением. В связи с этим могут работать с относительно большими частотами, чем остальные два. Используются в автоматике, телефонии, для маломощных агрегатов. Могут применяться в виде основного коммутатора либо совместно с более мощным, например, пускателем.

Реле имеет металлический или пластиковый корпус и диэлектрическую пластину, из которой выходят вывода для крепления проводов. К пластине крепится катушка и контакты. По числу контактов можно выделить:

  • одноконтактные;
  • много контактные.

Катушка представляет собой намотанный на каркас провод, а в центре ее находится металлический сердечник. Вблизи сердечника располагается металлическая пластина, к которой через изолирующую прокладку крепится один или несколько контактов. В некоторых конструкциях их может быть 20−30. Когда по катушке проходит ток, сердечник намагничивается и притягивает пластину с коммутирующим устройством. Чтобы коммутатор вернулся в свое первоначальное положение после снятия напряжения с обмотки катушки, к нему с противоположной стороны крепится пружина.

Те коммутирующие устройства, которые находятся в движении, называют подвижными. Другие — неподвижные, они не перемещаются во время работы реле. На каждый подвижный контакт приходится один или два неподвижных. В связи с этим их можно разделить на три группы:

  • замыкающие;
  • размыкающие;
  • переключающие.
Читать еще:  Bmw двигатель n46b20 характеристики

Замыкающими называют пару контактов, которые при срабатывании катушки замыкаются. Размыкающие, естественно, будут размыкаться при подаче на катушку напряжения. У переключающих подвижной коммутатор находится между двумя неподвижными, причем при отсутствии магнитного поля подвижные соединены с одним контактом, а при появлении магнитного поля они переключаются на другой.

Обычно на корпусе реле есть схема контактов, где показано, в каком положении при отсутствии напряжения на катушке находятся подвижные. Они пронумерованы, как и выводы на корпусе, что помогает определить, какой вывод соответствует тому или иному контакту. Отдельно показаны выводы катушки, они обозначаются буквами «А» и «Б».

На электрической схеме реле обозначается прямоугольником, а рядом ставится буква К. Если в схеме несколько реле, рядом с буквой ставится цифра — индекс. Сам прямоугольник обозначает обмотку катушки. Чтобы легче было читать схему, контакты могут располагаться отдельно от реле. Для идентификации рядом с ними ставится буква «К» и цифры (индекс), указывающие принадлежность к тому или иному реле. Если в реле несколько пар контактов, в индексе указывается их порядковый номер.

Магнитный пускатель

В быту и производстве широкое применение получил магнитный пускатель. Он используется для подключения потребителей различных мощностей. Корпус, изготовленный из электроизоляционного материала, полностью защищает человека от случайного поражения электрическим током.

Внутри корпуса крепится катушка с сердечником. Она подключается, на это необходимо обратить особое внимание, к напряжению 220 или 380 вольт. Несоблюдение этого требования приведет либо к плохой работе пускателя, либо к выходу из строя катушки. Номинальное напряжение указывается на самой катушке, а она ставится таким образом, что эту надпись можно было увидеть, не разбирая корпуса.

Как и в реле, обмотка с сердечником образует электромагнит, но гораздо большей мощности. Это позволяет увеличить скорость размыкания коммутирующего устройства за счет увеличения упругости пружины, что, в свою очередь, дает возможность подключать значительные токи к цепи.

Из-за размыкания больших токов возникает электрическая дуга. Она опасна тем, что может перекрыть соседние коммутирующие устройства, это приведет к короткому замыканию. Также увеличивается время разрыва цепи. Сами контакты под действием высокой температуры начинают плавиться и выгорать. Повышается сопротивление в них, что может плохо повлиять на работу электроприбора. Хуже всего, пожалуй, когда коммутирующие устройства слипаются, а то и вовсе привариваются, тогда цепь не сможет разомкнуться. Последствия предугадать несложно.

Для борьбы с этим нежелательным явлением существует несколько способов:

  1. Увеличение площади достигается засчет размера самого контакта. По сравнению с реле у пускателя она намного больше. Позднее придумали более оригинальный способ, сделали спаренный контакт. На самом подвижном контакте находится не одна, а две площадки. На неподвижном, соответственно, их тоже две.
  2. Второй метод сводится не только к подбору материала стойкого к температуре. Необходимо обеспечить малое сопротивление в контактах, в противном случае будет происходить потеря энергии. Таким требованиям больше всего соответствует серебро.
  3. В дугогасительных устройствах применяются разные принципы. Самый простой состоит в том, что между контактами в момент их разрыва вставляется изоляционная пластина. Она перерезает дугу. Другой способ заключается в выдувании дуги с помощью магнитного поля. Для этого к контакту подключается катушка, намотанная на ферромагнитный сердечник. К сердечнику крепятся две пластины из того же материала. Пластины же находятся возле контактов. Когда контакты размыкаются, по катушке проходит ток, создавая в сердечнике магнитное поле, а оно, в свою очередь, переходит на пластины. Между пластинами возникает мощное магнитное поле, которое разрывает электрическую дугу. Иногда пластины заменяют решеткой, которая действует аналогично. Но здесь используется еще и другой принцип. Поскольку дуга — это раскаленный ионизированный газ, то пластина или решетка выполняет роль огнетушителя, поскольку забирает тепло.
  4. Шунтирование контактов. При разрыве цепи, в которую включена индуктивность, а это катушки, двигатели, трансформаторы, ток не может сразу остановиться, поэтому возникает дуга. Чтобы предотвратить ее, необходимо ток направить по другому направлению. Это можно сделать двумя способами через конденсатор и резистор.

При использовании конденсатора необходимо подобрать емкость такой величины, чтобы она соответствовала индуктивности нагрузки. При малой емкости между контактами будут появляться искры, а при большой — сдвиг синуса по временной шкале, в худшем случае — срезание верхушек. Простым языком, ток будет выпрямляться, а это скажется на работе электроприборов.

Резистор устраняет эту проблему, но добавляет свою. При малом сопротивлении при разомкнутых контактах через пускатель будет идти ток. Это приведет к потере энергии и может представлять опасность для людей, находящихся, например, в сырых помещениях. При большом сопротивлении опять может возникнуть дуга.

Использование контактора

Контактор похож на магнитный пускатель, но работает со значительно большими токами. Обязательно имеет дугогасительную камеру, отличается быстрым срабатыванием. В отличие от магнитного пускателя не имеет защиты по току. В некоторых устройствах имеется не один, а два электромагнита. Для замыкания контактов используется основной, мощный, а для удержания применяется меньшей мощности.

Особенности подключения трехфазного двигателя

В домашних условиях иногда возникает необходимость подключения трехфазного двигателя через магнитный пускатель. На что необходимо обратить внимание? В магнитных пускателях предусмотрена защита по току. Она представляет собой биметаллическую пластину, по которой проходит ток. При нагревании пластина меняет форму, это используется для замыкания или размыкания контактов управления.

На корпусе пускателя имеются внешние контакты, которые также используются в цепи управления. Их обычно две пары, одни замыкающие, другие — размыкающие.

Основные контакты пускателя непосредственно подключают двигатель к трехфазной сети. Конструктивно две фазы уже проходят через биметаллические пластины, которые, в случае необходимости, разрывают цепь питания катушки пускателя.

Второй конец катушки идет по двум направлениям:

  • к нормально разомкнутым контактам на корпусе;
  • к кнопке «пуск».

После чего цепь вновь объединяется и идет к кнопке «Откл». После чего подсоединяется к фазе или нулю, в зависимости от типа катушки.

Если необходимо чтобы двигатель работал в двух направлениях, ставят второй пускатель по той же схеме и со своими кнопками управления. Разница будет заключаться в фазировке. Это можно будет сделать опытным путем. Двигатель пускается через один пускатель, отключается, пускается через другой. Если вращение происходит в одну и ту же сторону, две любые фазы на пускателе меняют местами.

Возможные неисправности

В процессе работы из-за износа или внешних факторов могут возникнуть неисправности:

  1. При включении пускателя контакты начинают дребезжать или не включаются.
  2. При отключении — залипают, между контактами появляются искры.

Что может быть причиной в первом случае? При замене катушки выбрали номинал большего значения. Стояла на 220 в, поставили на 380. Если не меняли, в катушке появились короткозамкнутые витки, и магнитное поле уменьшилось. Необходимо заменить катушку. При полном разборе пускателя поставили более мощную пружину на контактах.

Во втором случае либо контакты подпорчены, либо слишком большая нагрузка. Необходимо сверить ток потребителя и номинал пускателя. Если соответствуют — поменять контакты.

Читать еще:  Электро датчик температуры двигателя

МАГНИТНЫЙ ПУСКАТЕЛЬ И ЕГО ПРИМЕНЕНИЕ

Магнитные пускатели (МП) представляют собой коммутационные устройства, предназначенные для дистанционного запуска электрических двигателей и другого электрооборудования.

По своему устройству, магнитный пускатель аналогичен электромагнитному реле, но при этом способен осуществлять подключение и отключение трёхфазной нагрузки. В основе конструкции МП находится Ш – образный магнитный сердечник, набранный из листов электротехнической стали.

Магнитный сердечник разделён на две половины, одна из которых неподвижно закреплена на основании устройства, вторая подвижна. В обесточенном состоянии подвижная часть магнитопровода под воздействием пружины отодвинута от неподвижной части, образуя воздушный зазор.

На центральном стержне неподвижной части сердечника расположена катушка, с помощью которой осуществляется управление подключением электромагнитного пускателя.

На движущемся магнитопроводе закреплены контактные мостики. При срабатывании магнитного пускателя мостики, перемещаясь вместе с магнитопроводом замыкают неподвижные контактные группы, установленные на стационарной, остающейся неподвижной части корпуса МП.

Срабатывание устройства происходит при подключении напряжения к катушке управления магнитного пускателя. Под воздействием намагничивающей силы подвижная часть магнитного сердечника притягивается к стационарной. При этом происходит замыкание силовых контактных групп, и рабочее напряжение подаётся на выходные клеммы устройства.

После обесточивания катушки, подвижный магнитопровод отходит под воздействием возвратной пружины, размыкая контакты.

Особенностью характеристики контактной группы магнитного пускателя является образование двойного разрыва в цепи каждого полюса, что благоприятно сказывается на способности устройства гасить электрическую дугу. Контакты находятся под крышкой, одновременно служащей дугогасительной камерой.

Кроме основных контактных групп, обеспечивающих подключение и отключение силовых цепей полюсов, МП оборудованы вспомогательной контактной группой, которую называют блок – контактами. Вспомогательные контактные устройства используются в схемах управления, сигнализации и блокировки.

ПОДКЛЮЧЕНИЕ МАГНИТНОГО ПУСКАТЕЛЯ

Типовая схема подключения асинхронного двигателя через магнитный пускатель, предназначена для пуска и останова двигателя с короткозамкнутым ротором и содержит кнопочный пост. Кнопочным постом называются размещённые в одном корпусе кнопки «Пуск» и «Стоп».

В типовой схеме управления задействованы:

  • нормально открытая контактная группа кнопки «Пуск»;
  • нормально закрытая контактная группа кнопки «Стоп»;
  • нормально открытый блок – контакт МП.

Подключение катушки управления (К) к напряжению питания осуществляется через последовательно соединённые контактные устройства кнопок «Стоп» и «Пуск». Кнопочный контакт «Пуск» зашунтирован нормально открытой вспомогательной контактной группой МП. Работает схема следующим образом.

При нажатии кнопки «Пуск» замыкаются её контактные пластины и через замкнутые контакты «Стоп» происходит подключение катушки управления к питающему напряжению (Uупр). Магнитный пускатель срабатывает, замыкая основные цепи (К2).

Замыкающийся вспомогательный контакт (К1) шунтирует контакты кнопки «Пуск». В результате этого, подключение напряжения к катушке производится через остающийся замкнутым контакт кнопки «Стоп» и замкнувшийся при срабатывании МП его блок-контакт. Кнопка «Пуск» при её отпускании размыкается.

Таким образом, МП остается подтянутым благодаря своему же замкнувшемуся контакту. Это явление на жаргоне электриков называется самоподхват. При отсутствии шунтирующих блок-контактов, осуществляющих самоподхват, устройство будет отключаться при отпускании кнопки «Пуск». То есть, подключение будет происходить только во время нажатия кнопки.

Отключение устройства осуществляется нажатием «Стоп». При этом размыкается нормально закрытый контакт этой кнопки и питание катушки управления прерывается.

Кнопочные посты устанавливаются в непосредственно близости от управляемого двигателя. Запуск двигателя также может осуществляться с пульта управления технологическим процессом. В этом случае на панели оператора установлены ключи управления всеми механизмами данного процесса.

ПОДКЛЮЧЕНИЕ В РЕВЕРСИВНОМ РЕЖИМЕ

Схема реверсивного магнитного пускателя необходима для подключения двигателей обеспечивающего их вращение, как в прямом, так и в обратном (реверсивном) направлении.

Типичный пример использования реверсивного пуска – внутрицеховые грузоподъёмные механизмы. В реверсивном режиме работают двигатели, выполняющие подъём и опускание груза, а также двигатели, перемещающие таль или кран-балку по цеху.

Для того, чтобы заставить асинхронный двигатель вращаться в реверсивном направлении, необходимо произвести смену чередования фаз на его выводах. Для реализации реверсивной схемы включения необходимо подключить два магнитных пускателя.

К входным клеммам одного из них производится подключение трёх фаз в прямой последовательности, на вход другого – в обратной (реверсивной) последовательности. Выходные клеммы устройства соединены параллельно и подключены к выводам асинхронного двигателя.

Для реверсивного управления используется кнопочный пост из трёх кнопок – «Стоп», «Вперёд» и «Назад». Нажатие кнопки «Вперёд» подключает к двигателю прямую последовательность фаз, «Назад» — реверсивную, обратную. Одновременное включение прямого и реверсивного магнитных пускателей недопустимо, так как приводит к междуфазному короткому замыканию.

Для увеличения надёжности реверсивной схемы дополнительно применяют механическую блокировку устройства от одновременного включения реверсивных магнитных пускателей. В цепях запуска прямого и реверсивного пускателей используется самоподхват, аналогично типовой схеме.

Для смены направления вращения двигателя необходимо сначала нажать «Стоп», после чего выбрать требуемое направление. Термин «реверсивный» часто употребляют в качестве характеристики разновидности МП. Если быть точным, то реверсивным является не сам МП, а определённая схема управления двумя устройствами, позволяющая осуществлять реверсивный пуск двигателей.

РАЗНОВИДНОСТИ УСТРОЙСТВ

Модели магнитных пускателей классифицируются по следующим параметрам:

  • рабочий ток, коммутируемый основными контактами;
  • рабочее напряжение нагрузки;
  • напряжение и род тока катушки управления;
  • категория применения.

Номинальные токи аппаратов составляют стандартизованный ряд значений от 6,3 А до 250 А. Этот ряд соответствует устаревшей классификации этих коммутационных приборов по величине, согласно которой все МП подразделялись на величины от нулевой (0) до седьмой (7).

Каждому значению величины МП соответствовал определённый номинальный ток. Например, нулевой величине соответствует значение 6,3 ампера, первой – 10 ампер и так далее.

С появлением большого числа зарубежных МП, распространённость классификации по величинам стала угасать. Действительно, логику введения дополнительного понятия величины МП понять трудно. Типичная «бритва Оккама». При выборе аппарата в первую очередь нас интересует его номинальный ток, о нём и следует говорить.

В этом сегменте имеется два стандартных напряжения – 380 В и 660 В. На какое напряжение рассчитана конкретная модель указывается в техническом паспорте устройства, а также написано на корпусе.

Гораздо более разнообразен ряд напряжений, на подключение к которым рассчитана катушка управления. Это объясняется тем, что МП работают в различных системах управления и автоматики.

В этом случае подключение напряжения к катушке управления производится не просто от одной или двух фаз питающей электросети. В системах автоматики сформированы специальные цепи оперативного тока, которые бывают различными по уровню напряжения и роду тока.

Катушки управления коммутационных аппаратов могут быть рассчитаны на подключение к переменному напряжению в диапазоне от 12 до 660 вольт или к постоянному от 12 до 440 вольт.

В соответствии с ГОСТ МП делятся на 12 категорий (от AC–1 до AC–8b), в зависимости от характера нагрузки переменного тока, подключение которой они производят. Наибольшее распространение имеют категории AC-3 и AC-4, предназначенные для подключения двигателей с короткозамкнутым ротором.

МП могут различаться также комплектацией, внешним оформлением. К распространённым вариантам относятся модели, размещённые в корпусе, снаружи которого расположены кнопки «Пуск» и «Стоп». В комплект поставки магнитного пускателя может входить тепловое реле защиты.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]