Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения электродвигателя к сети 220 вольт

Схема подключения электродвигателя к сети 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

  • Принцип действия
  • Двухфазный синхронный электродвигатель
  • Трехфазный синхронный двигатель
  • Трехфазный асинхронный двигатель
  • Однофазный асинхронный электродвигатель
  • Схема включения
  • Подсоединение к однофазной сети
  • Подключение на 220 вольт
  • Как включить однофазный асинхронный двигатель

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Подключение трехфазного двигателя к однофазной сети

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

Читать еще:  Чьи дизельные двигатели лучшие

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

Читать еще:  Ccza что за двигатель

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Как подключить электродвигатель

В промышленности отдавать предпочтение именно трехфазным электродвигателем, так как они имеют весомые преимущества перед одно и двухфазными моторами. Такое оборудование подключается к электросети 380 вольт. Это обеспечивает стабильную и экономичную работу подконтрольного устройства.

Магнитное поле вращение появляется в статоре сразу после подачи питания 380 вольт устройство. Благодаря этому, для подключения электродвигателя трехфазного типа, не нужно применять пусковые устройства обмотки (конденсаторы и прочие).

Схемы подключения электродвигателя

Существует 3 схемы подключения оборудования:

Подключение происходит на 6 выводов, расположенных в клеммной коробке. Ими являются U (1, 2), V (1, 2) и W (1, 2). Метки означают, что электромотор может быть подключен к сети электропитания с вольтажом как 380, так и 220. Схема звезда актуальна для промышленных электродвигателей.

Звезда подразумевает подключение 3 фаз на разъемы A , B , C . Для схемы треугольник нужно выполнить 3 последовательные соединения. После этого нужно соединить их к 3 разъемам A , B , C . Принцип подключения схем звезда и треугольник указан на рисунке 1.

Обратите внимание. Несмотря на плавный пуск двигателя, подключенного по типу звезда, работа оборудования на максимальной мощности достичь будет довольно сложно. Просадка по мощности – примерно 1.5 раза. Полную мощность, заявленную в документации, электродвигатель выдает, если подключить его треугольником. Однако в этом случае электрический ток будет настолько большим, что может повредить изоляцию проводов, а также уменьшить срок полезной эксплуатации электродвигателя.

Многие современные электродвигатели уже имеют в своей конфигурации схему подключения звезда. Это указано на шильде устройства: обмотки оборудования могут быть соединены треугольником на 220 воль или звездой на 380 вольт. Все зависит от условий эксплуатации изделия и подконтрольных машин.

Для получения большей мощности используется сочетание этих 2 схем: треугольник-звезда. Если в электрическом двигателе уже реализована схема звезда, остается только организовать треугольник. Для обеспечения работоспособности треугольника-звезды нужно использовать 3 пускателя. Подробнее принцип подключения показан на рисунке 2.

К первому пускателю, который обозначен К1, с одной стороны подводится электропитание, а к другому подсоединяется статор. Статор остальными свободными концами подсоединяется к пускателям, обозначенным К2 и К3. Обмотка пускателя К2 соединяется к остальным фазам. Благодаря этому, образуется треугольник подключения.

При включении пускателя К3 в фазу, наблюдается укорачивание остальных его концов, что образует звезду. В процессе подключения нужно обратить внимание, что 3 и 2 пускатели, работающие на магнитах, нельзя включать одновременно. Это приведет к короткому замыканию и автоматическому отключению автомата электрического двигателя. Чтобы избежать этого в систему мотора встроена система электрической блокировки. Принцип ее работы заключается в том, что при работе одного из пускателей цепь контактов второго размыкается, делая невозможным его работу.

Альтернативные способы подключения электромотора

Схема звезда-треугольник используется крайне редко. Существует несколько альтернативных способов подключения, которые используются чаще. Подключение может происходит с использованием конденсатора. Этот способ наиболее простой, однако в результате получается резкое снижение мощности.

Для работы представленной схемы нужно оба контакта конденсатора подключить к 0 и третьему выходу мотора. Мощность собранного агрегата составляет до 1.6 Вт. Если при такой схеме подключения нужно больше мощности, в систему вводят специальный конденсатор пускового назначения. При однофазном подключении он несет компенсационную функцию отсутствия 3 входа. Схема изображена на рисунке 3.

Читать еще:  Шкаф управления двигателями схема

Подключение асинхронного электродвигателя можно подключить по схеме звезда или треугольник с цепи 380 на 220. В моделях таких устройств установлены 3 обмотки, соединенные между собой звездой или треугольником. Изменение типа подключения осуществляется путем замены выводов, идущих на крайние точки соединений.

От мастеров требуется тщательное изучение инструкции по эксплуатацию используемых электродвигатель, а также внимательно читать характеристики этого оборудования. Случается так, что конкретные модели устройств могут быть подключены к 220 только по установленной схеме треугольник. Если мощность двигателя превышает 3 киловатта, то подключать его к бытовой сети запрещается. Если проигнорировать это правило и подключить мотор по типу звезда, оборудование не выдержит возросшего напряжения и сгорят под нагрузкой.

Конденсаторы подбирают, ориентируясь на минимальное значение емкости, допустимое для работы системы. Далее ее значение опытным путем увеличивать до оптимального показателя, обеспечивающего работу электродвигателя. В ситуации, когда мотор долгое время стоит без подключения к электричеству или просто не используется, при подключении к нагрузке он может сгореть.

Также нужно обратить внимание, что после отключения электропитания конденсаторы какое-то время хранят электрический заряд. Трогать их строго запрещается. Лучше огородить их специальным слоем, не пропускающим электрический ток. Это поможет избежать несчастных случаев на производстве.

Рекомендуемые товары

В промышленности отдавать предпочтение именно трехфазным электродвигателем, так как они имеют весомые преимущества перед одно и двухфазными моторами. Такое оборудование подключается к электросети 380 вольт. Это обеспечивает стабильную и экономичную работу подконтрольного устройства.

Магнитное поле вращение появляется в статоре сразу после подачи питания 380 вольт устройство. Благодаря этому, для подключения электродвигателя трехфазного типа, не нужно применять пусковые устройства обмотки (конденсаторы и прочие).

Схемы подключения электродвигателя

Существует 3 схемы подключения оборудования:

Подключение происходит на 6 выводов, расположенных в клеммной коробке. Ими являются U (1, 2), V (1, 2) и W (1, 2). Метки означают, что электромотор может быть подключен к сети электропитания с вольтажом как 380, так и 220. Схема звезда актуальна для промышленных электродвигателей.

Звезда подразумевает подключение 3 фаз на разъемы A , B , C . Для схемы треугольник нужно выполнить 3 последовательные соединения. После этого нужно соединить их к 3 разъемам A , B , C . Принцип подключения схем звезда и треугольник указан на рисунке 1.

Обратите внимание. Несмотря на плавный пуск двигателя, подключенного по типу звезда, работа оборудования на максимальной мощности достичь будет довольно сложно. Просадка по мощности – примерно 1.5 раза. Полную мощность, заявленную в документации, электродвигатель выдает, если подключить его треугольником. Однако в этом случае электрический ток будет настолько большим, что может повредить изоляцию проводов, а также уменьшить срок полезной эксплуатации электродвигателя.

Многие современные электродвигатели уже имеют в своей конфигурации схему подключения звезда. Это указано на шильде устройства: обмотки оборудования могут быть соединены треугольником на 220 воль или звездой на 380 вольт. Все зависит от условий эксплуатации изделия и подконтрольных машин.

Для получения большей мощности используется сочетание этих 2 схем: треугольник-звезда. Если в электрическом двигателе уже реализована схема звезда, остается только организовать треугольник. Для обеспечения работоспособности треугольника-звезды нужно использовать 3 пускателя. Подробнее принцип подключения показан на рисунке 2.

К первому пускателю, который обозначен К1, с одной стороны подводится электропитание, а к другому подсоединяется статор. Статор остальными свободными концами подсоединяется к пускателям, обозначенным К2 и К3. Обмотка пускателя К2 соединяется к остальным фазам. Благодаря этому, образуется треугольник подключения.

При включении пускателя К3 в фазу, наблюдается укорачивание остальных его концов, что образует звезду. В процессе подключения нужно обратить внимание, что 3 и 2 пускатели, работающие на магнитах, нельзя включать одновременно. Это приведет к короткому замыканию и автоматическому отключению автомата электрического двигателя. Чтобы избежать этого в систему мотора встроена система электрической блокировки. Принцип ее работы заключается в том, что при работе одного из пускателей цепь контактов второго размыкается, делая невозможным его работу.

Альтернативные способы подключения электромотора

Схема звезда-треугольник используется крайне редко. Существует несколько альтернативных способов подключения, которые используются чаще. Подключение может происходит с использованием конденсатора. Этот способ наиболее простой, однако в результате получается резкое снижение мощности.

Для работы представленной схемы нужно оба контакта конденсатора подключить к 0 и третьему выходу мотора. Мощность собранного агрегата составляет до 1.6 Вт. Если при такой схеме подключения нужно больше мощности, в систему вводят специальный конденсатор пускового назначения. При однофазном подключении он несет компенсационную функцию отсутствия 3 входа. Схема изображена на рисунке 3.

Подключение асинхронного электродвигателя можно подключить по схеме звезда или треугольник с цепи 380 на 220. В моделях таких устройств установлены 3 обмотки, соединенные между собой звездой или треугольником. Изменение типа подключения осуществляется путем замены выводов, идущих на крайние точки соединений.

От мастеров требуется тщательное изучение инструкции по эксплуатацию используемых электродвигатель, а также внимательно читать характеристики этого оборудования. Случается так, что конкретные модели устройств могут быть подключены к 220 только по установленной схеме треугольник. Если мощность двигателя превышает 3 киловатта, то подключать его к бытовой сети запрещается. Если проигнорировать это правило и подключить мотор по типу звезда, оборудование не выдержит возросшего напряжения и сгорят под нагрузкой.

Конденсаторы подбирают, ориентируясь на минимальное значение емкости, допустимое для работы системы. Далее ее значение опытным путем увеличивать до оптимального показателя, обеспечивающего работу электродвигателя. В ситуации, когда мотор долгое время стоит без подключения к электричеству или просто не используется, при подключении к нагрузке он может сгореть.

Также нужно обратить внимание, что после отключения электропитания конденсаторы какое-то время хранят электрический заряд. Трогать их строго запрещается. Лучше огородить их специальным слоем, не пропускающим электрический ток. Это поможет избежать несчастных случаев на производстве.

Схемы подключения электродвигателя насоса.

Cхема электрическая принципиальная подключения электродвигателя общепромышленного исполнения с защитой по току.

Cхема подключения электродвигателя общепромышленного исполнения с защитой по току и с датчиком уровня жидкости

Датчик уровня затворной жидкости устанавливается в бачок охлаждения торцового уплотнения посредством вкручивания до упора. При вертикальном расположении бачка, при отсутствии затворной жидкости, поплавок самого датчика должен быть опущен (нормально-разомкнутый контакт). При заполненном бачке, поплавок занимает горизонтальное положение вдоль датчика (нормально-замкнутый контакт). При понижении уровня затворной жидкости поплавок датчика опускается, размыкается контакт, и автоматика отключает насос. Монтаж осуществляется согласно электрической схеме. Мы применяем датчики уровня жидкости поплавкового типа моделей FS8-88-1-N-PP,RSF84Y100R или их аналоги.
В случае перекачивания горючих, взрывоопасных сред электронасос комплектуется взрывозащищенным электродвигателем и двойным торцевым уплотнением.В бачок для затворной жидкости в этом случае можем установить поплавковый датчик во взрывозащищенном исполнении типа ОВЕН ПДУ 2.1-Ex.

Внешний вид датчиков уровня жидкости


Схема подключения

Cхема электрическая принципиальная подключения электродвигателя общепромышленного исполнения с защитой по току, с датчиком уровня жидкости и датчиком температуры.

  • НОВОСТИ САЙТА
  • Главная
  • Каталог насосов
    • Расшифровка марки насоса
    • ОНЦ
    • ХМ
    • ОНЦс
    • ХМс
    • ОНЛ
    • РПА
    • РПУ
    • ВКс
    • ОНЦв
    • ОНЛб
    • ОНР
    • ОНП
    • ХМс (ОНЦс) с бензиновыми двигателями на тележках
    • Дизель-насосные агрегаты
    • Автоматизация
    • Схемы подключения двигателя насоса
  • Видео
  • Применяемые рабочие колеса
  • Применяемые торцевые уплотнения
  • Комплектующие для насосов
  • Сертификаты на электронасосы
  • Сертификаты на электродвигатели
  • Партнеры
  • Бланк заказа
  • Контакты
  • Ответы на часто задаваемые вопросы
  • 3D модели для проектировщиков
  • Онлайн расчет потерь напора по длине
  • Статьи

Заводской проезд, д. 2

Представительства в регионах:

420080, Республика Татарстан,

г. Казань, ул. Восстания, 37

тел: 8 (843) 202-41-70

141190, Московская обл., г. Фрязино,
Заводской проезд д.2

Ссылка на основную публикацию
Adblock
detector