Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическое торможение двигателя что это

ЭЛЕКТРИЧЕСКОЕ ТОРМОЖЕНИЕ

Двигатели постоянного тока, в том числе и тяговые, как уже было отмечено, обладают свойством обратимости , т. е, могут работать как генераторы. При этом кинетическая и потенциальная энергия поезда преобразуются в электрическую. Получаемая энергия превращается в тепловую в резисторах или возвращается в контактную сеть. В зависимости от этого различают два вида электрического торможения: реостатное и рекуперативное.
При реостатном торможении тяговые двигатели отключают от контактной сети и включают на тормозные резисторы. Преимуществом этого способа торможения является независимость тормозного процесса от наличия напряжения в контактной сети. Применяют две системы реостатного торможения: с самовозбуждением двигателей и с независимым возбуждением.
В первом случае обмотки возбуждения двигателей соединены последовательно с обмотками их якорей. Чтобы обеспечить переход из тягового режима в тормозной, начало и конец обмоток возбуждения тяговых двигателей ме­няют местами с помощью контактов реверсора (рис. 45). Это необходимо, так как в генераторном режиме ток по обмоткам якоря проходит в направлении, противоположном его направлению в двигательном режиме, а по обмотке возбуждения ток должен проходить в том же направлении.

Рис.45 Схема цепей электрического торможения при включении группы тяговых двигателей на отдельный тормозной реостат

Действительно, если отсутствует напряжение, подаваемое на двигатель извне, направление тока будет определяться направлением э. д. с. двигателя, противоположным направлению внешнего напряжения.
Известно, что сталь после прекращения ее намагничивания обладает остаточным магнетизмом, который исчезает, когда изменяется направление тока в обмотках возбуждения. При этом может нарушиться самовозбуждение двигателей.
Во время торможения каждую группу, например, из двух тяговых двигателей, соединенных последовательно, можно включить на отдельный тормозной резистор Rт (см. рис. 45). Если в режиме тяги были замкнуты контакты реверсора 1, 2, то перед переходом на реостатное торможение они размыкаются и замыкаются контакты 3, 4. При этом тормозной ток Iт, проходя по обмоткам возбуждения в том же направлении, что и в двигательном режиме, создает поток, намагничивающий машину. Их общая э. д. с. увеличивается. Ток Iт возрастает до некоторого значения, определяемого скоростью движения и сопротивлением тормозного реостата Rт. Тормозную силу регулируют, изменяя ток Iт путем включения или выключения секций тормозного реостата с помощью контакторов (на рис. 45 они не показаны).
При реостатном торможении тяговые двигатели включают параллельно по два в каждом плече. В этом случае возросшее напряжение на каждом двигателе находится в допустимых пределах — в 1,5—1,7 раза выше, чем в тяговом режиме, и можно использовать в режиме торможения пусковой реостат. Однако при параллельном соединении двигателей последовательного возбуждения приходится принимать специальные меры для обеспечения их устойчивой работы и равномерного распределения тока между ними. Если двигатели включить параллельно (рис. 46 — замкнуты контакты 1, 2, а контакты 3, 4 разомкнуты), реостатное торможение неустойчиво, так как любое случайное увеличение тока в одной из двух ветвей, содержащих по два последовательно со­единенных двигателя, увеличивает э. д. с. двигателей этой ветви. Появляется уравнительный ток, который еще больше нагружает их и разгружает двигатели другой ветви. Это может в конце концов привести к короткому замыканию двигателей первой ветви и полному размагничиванию, а затем и перемагничиванию двигателей второй ветви.

(Электрически устойчивой является система, в которой при нарушении установившегося состояния, вызванном так называемыми возмущающими воздействиями, токи и напряжения изменяются, но после исчезновения этих воздействий принимают прежние установившиеся значения. Если меняются условия, определяющие установившийся режим (например, напряжение сети, сопротивление тормозного реостата), то устойчивая система принимает новое состояние равновесия. Система, не удовлетворяющая этим условиям, неустойчива.)

Наилучшее распределение нагрузок между тяговыми машинами и их устойчивую работу обеспечивает так называемая перекрестная схема (на рис. 46 контакты 1, 2 разомкнуты, а контакты 3, 4 замкнуты).

Рис.46. Схема цепей электрического торможения с общим тормозным реостатом при перекрестном включении обмоток возбуждения

Если по какой-либо причине э. д. с. двигателей I, II, а следовательно, и ток будут больше, чем соответственно э. д. с. и ток двигателей III, IV, ток в обмотках возбуждения последних будет возрастать, пока э. д. с. двигателей I, II и III, IV не станут равными.
В случае параллельного соединения трех групп двигателей возможно применение так называемой циклической схемы реостатного торможения, при которой обмотка возбуждения каждого двигателя соединена последовательно с якорем двигателя другой параллельной ветви. Подразумевается такое включение обмоток, при котором их потоки не размагничивают двигатели.
Реостатное торможение двигателей с самовозбуждением имеет ряд недостатков. Одним из них является сравнительно медленное самовозбуждение и относительно большое время, которое требуется для создания необходимой тормозной силы. Чтобы ускорить самовозбуждение, можно подать дополнительное напряжение от независимого источника либо на основную обмотку возбуждения, либо на специальную добавочную обмотку с небольшим числом витков. При этом начальная э. д. с. определяется уже не потоком остаточного магнетизма, а значительно большим магнитным потоком.
Тормозную силу регулируют, изменяя как сопротивление Rт, так и магнитный поток двигателей, для чего изменяют напряжение независимого источника.
В случае рекуперативного торможения электрическая энергия, возвращаемая в контактную сеть рекуперирующим электровозом, потребляется электровозами, находящимися с ним на одном участке и работающими в тяговом режиме. Если таких электровозов нет или необходимая им энергия меньше рекуперируемой, то так называемая избыточная энергия рекуперации через устанавливаемые на тяговой подстанции специальные устройства — инверторы, преобразующие постоянный ток в переменный трехфазный, направляется в энергосистему. На электрифицированных участках с очень интенсивным движением, где, как правило, почти вся рекуперируемая энергия потребляется электровозами или электропоездами, работающими в режиме тяги, иногда вместо инверторов на подстанциях устанавливают поглощающие резисторы. Они автоматически включаются при наличии избыточной энергии рекуперации.
Применение рекуперации дает большой эффект. На отдельных участках с крутыми спусками может быть сэкономлено до 20% электрической энергии, затрачиваемой на тягу поездов. Преимущества рекуперативного торможения этим не ограничиваются. Когда поезд следует по крутому спуску, для того чтобы его скорость не превысила допустимую, обычно локомотив и состав периодически подтормаживают пневматическими тормозами. В результате скорость движения поезда уменьшается, а затем вновь возрастает, т. е. средняя скорость его на спуске ниже допустимой. Кроме того, все время притормаживать поезд нельзя, так как истощается пневматическая тормозная система, снижается коэффициент трения колодок вследствие их нагревания. При рекуперативном торможении можно обеспечить на спуске постоянную скорость, близкую к допустимой, зависящей от состояния пути, конструкции электровозов, вагонов, контактной сети. Кроме того, к контактной сети при рекуперации подключается дополнительный источник энергии, напряжение в ней повышается, и другие электровозы на этом участке, следующие по подъему или площадке, могут развивать более высокую скорость.
Благодаря электрическому торможению также значительно уменьшается износ тормозных колодок и колес подвижного состава, в результате чего намного снижаются расход металла и затраты на ремонт колесных пар.
Системы рекуперативного торможения должны обеспечивать постоянный ток рекуперации в тяговых двигателях и тормозной момент в условиях непрерывного изменения напряжения в контактной сети. Напряжение в контактной сети колеблется хотя бы потому, что от нее в разные периоды питается различное количество электровозов и электропоездов, да и потребляемая ими мощность меняется в очень широких пределах. При эти возможны резкие изменения тока pрекуперации. Этот ток определяется разностью суммарной э. д. с. последовательно соединенных двигателей и напряжения в контактной сети, деленного на сопротивление их обмоток. Общее сопротивление обмоток двигателей, даже соединенных последовательно, как отмечалось выше, мало. Поэтому даже относительно небольшие резкие изменения разности суммарной э. д. с. и напряжения сети вызывают большие броски тока.
Предположим, что в контактной сети по какой-либо причине напряжение увеличилось. Тогда ток в якоре тягового двигателя, работающего в режиме генератора, может изменить направление, и двигатель автоматически перейдет в тяговый режим. Вместо того чтобы тормозить поезд, двигатель будет разгонять его. При понижении напряжения, наоборот, ток рекуперации резко увеличится, тормозной момент возрастет и в поезде возникнут сильные толчки вследствие набегания хвостовых вагонов.
Следовательно, при допустимых нормами колебаниях напряжения в контактной сети в системе рекуперативного торможения должен автоматически поддерживаться примерно один и тот же ток рекуперации, а значит, и тормозной момент, установленный в зависимости от условий движения поезда.
Напомним, что для перехода двигателя из тягового режима в генераторный необходимо, чтобы э. д. с. в обмотке якоря стала больше приложенного напряжения, т. е. напряжения в контактной сети. Но двигатель с последовательным возбуждением не может перейти в режим генератора, потому что магнитный поток возбуждения в нем резко снижается при уменьшении нагрузки, а э. д. с. в обмотке якоря не может стать выше напряжения в сети.
Для того чтобы осуществить рекуперативное торможение, необходимо обмотки возбуждения отключить от обмоток якорей и питать их от постороннего источника энергии, например от специального генератора возбудителя В (рис. 47, а).

Читать еще:  Что такое vtc двигатель

Рис.47 Схема рекуперативного торможения при независимом возбуждении тяговых двигателей со стабилизирующим резистором Rст (а) и с противовозбуждением возбудителя (б)

Якорь возбудителя приводится во вращение двигателем Д. В этом случае можно установить в обмотках возбуждения такой ток, при котором э. д. с. в обмотках якорей тяговых двигателей станет больше напряжения в контактной сети. Если скорость движения поезда уменьшится, то может снизиться э. д .с. двигателей, работающих в режиме генераторов. Однако достаточно увеличить ток возбуждения Iв чтобы поддержать необходимую э. д. с, а значит, ток и тормозной момент, создаваемый двигателями. Для этого регулируют ток Iв в независимой обмотке возбуждения возбудителя В, изменяя сопротивление реостата П..
Схемы, построенные по такому принципу, можно использовать для рекуперативного торможения нескольких параллельно включенных двигателей. При этом в каждой цепи двигателя имеется стабилизирующий резистор R т, а обмотки возбуждения подключены к общему возбудителю В. Стабилизирующие резисторы обеспечивают электрическую устойчивость системы в режиме рекуперативного торможения, но они жесоздают и присущий схеме недостаток: значительные потери энергии в этих резисторах и необходимость повышенной мощности возбудителя для их компенсации.
Предложено несколько схем, свободных от этого недостатка. Так, на восьмиосных электровозах для осуществления рекуперативного торможения используют противовозбуждение возбудителя (рис. 47, б). В этом случае обмотки возбуждения ОВ тяговых двигателей подключают к якорю возбудителя В. Возбудитель имеет две обмотки: независимую ОНВ, напряжение в которую подается от постороннего источника энергии, и обмотку противовозбуждения ОПВ, включенную последовательно в цепь тока рекуперации. Магнитные потоки обеих обмоток, создаваемые соответственно токами Iонв и Iр, направлены встречно. При увеличении тока рекуперации в случае уменьшения напряжения в контактной сети ток обмотки противовозбуждения снижает результирующий магнитный поток возбуждения возбудителя. Соответственно уменьшаются возбуждение генератора (тягового двигателя) и его э. д. с. Когда напряжение в контактной сети повышается, ток рекуперации уменьшается и все процессы в схеме проходят в обратном порядке. При рекуперативном торможении с использованием противовозбуждения обмотки возбуждения двигателей включают так же, как и при реостатном торможении, по циклической схеме. Это позволяет выравнивать токи в параллельных цепях якорей двигателей в случае повышения э. д. с. в одной из них.
В зависимости от скорости движения поезда рекуперативное торможение применяют на трех соединениях якорей тяговых двигателей. Если скорость движения большая, используют параллельное соединение. В случае малой скорости движения получить большую э. д. с. машин невозможно, и тогда применяют последовательно-параллельное или последовательное соединение.
Необходимые переключения в силовой цепи для перехода в рекуперативный режим производят тормозным переключателем. По устройству он аналогичен реверсору (см. рис. 44). На электровозах серий ВЛ8, ВЛ10, ВЛ11 (в двухсекционном исполнении) устанавливают два кулачковых тормозных переключателя.

Реверсирование и электрическое торможение асинхронных двигателей.

Для изменения направления вращения, реверсирования, асинхронного двигателя необходимо поменять местами два любых линейных провода, соединяющих трехфазную сеть со статором машины. При таком переключении порядок чередования токов в фазах изменяется на обратный, что вызывает изменение направления вращения поля и направления вращения двигателя. Схема реверсирования двигателя представлена на рис. 1; положения 1 и 2 рубильника соответствуют различным порядкам чередования токов в фазах и, следовательно, противоположным направлениям вращения двигателя.

Включение неподвижного двигателя в том или другом направлении производится путем включения рубильника в положение 1 или 2. При реверсировании двигателя на ходу путем переключения рубильника вначале происходит торможение от данной скорости до нулевой, а затем разгон в другом направлении. Такое торможение может быть использовано также для торможения при так называемом противовключении. При таком реверсировании или торможении у асинхронного двигателя с короткозамкнутым ротором имеют место значительные токи. Поэтому исходя из условий нагрева для этих двигателей допустимо число реверсирований в час не более десятков. Для ограничения токов и увеличения вращающих моментов в цепь фазного ротора асинхронного двигателя вводят сопротивление.

Рассмотрим три основных способа электрического торможения асинхронных двигателей.

Торможение по способу противовключения, как было указано, производится при переключении двигателя на ходу. Магнитное поле при этом вращается в другую сторону относительно направления вращения двигателя, и вращающий момент двигателя является тормозным — действует против направления вращения.

Генераторное торможение имеет место при переключении многоскоростного двигателя на ходу с большей скорости на меньшую, т.е. при переключении машины с меньшего числа полюсов на большее. В первый момент переключения скорость двигателя оказывается намного больше скорости его поля, т.е., скольжение получается отрицательным и машина переходит в режим работы генератором. Торможение происходит с превращением кинетической энергии вращающихся частей в электрическую энергию, которая за вычетом потерь в машине отдается в сеть. Генераторное торможение может быть также в подъемнике при спуске тяжелого груза, разгоняющего двигатель до скорости, превышающей синхронную; тогда машина начинает отдавать в сеть энергию, сообщаемою ей опускающимся грузом.

Торможение в режиме работы генератором возможно только при сверхсинхронной скорости. Если двигатель в конце торможения должен быть остановлен, то к концу торможении следует перейти на механическое торможение или на другой вид электрического (динамическое, противовключение). Фиксации положения в конце при необходимости производится только с помощью механического тормоза.

Читать еще:  Двигатель td226b расход топлива

При динамическом торможении обмотка статора двигателя отключается от трехфазной сети и включается в сеть постоянного или однофазного переменного токи. При этом возможны различные способы соединения фаз обмотки статора.

Обмотка статора, питаемая постоянным током, создает неподвижное магнитное поле. Аналогично тому, как при нормальной работе двигателя его вращающееся поле увлекает за собой ротор, неподвижное поле при динамическом торможении заставляет ротор быстро останавливаться. Кинетическая энергия вращающихся частей переходит в теплоту, выделяющуюся в цепи ротора за счет токов, индуктированных в ней неподвижным полем статора. Плавность торможения обеспечивается регулированием напряжения на зажимах статора, Тормозной момент двигателя с фазным ротором может регулироваться также реостатом в цепи ротора. Недостатком динамического торможения является необходимость наличия источника постоянного тока с низким напряжением.

Торможение двигателей постоянного тока

Виды электрического торможения. Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 8.71, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Рис. 8.71. Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 (рис. 8.72, а) При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Рис. 8.72. Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря (рис. 8.76, а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 8.76, б и в.

Рис.8.76. схема и механические характеристики двигателей в режиме электромагнитного торможения.

21.Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

Электропоезда постоянного тока | Электрическое торможение и особенности схемы

Описание электропоездов и электровозов, расписание поездов, фотографии

Чтобы перейти в режим электрического торможения, двигатели переводят в генераторный режим, при котором они создают тормозной момент. Выражение «генераторный режим» обычно вызывает у эксплуатационников неприятные ассоциации, так как хорошо известны

последствия: полностью выведенные из строя тяговые двигатели, а иногда — пожар на электропоезде. Дело в том, что этот стихийный процесс протекает обычно без ограничения тока якорей и совершенно бесконтрольно. Перечислим три фактора (или три условия) генераторного режима (условно считаем, что имеется один двигатель):

якорь должен вращаться, т.е. процесс происходит на ходу поезда;

имеется замкнутый контур для тока якоря. Обычно он возникает из-за пробоя изоляции на землю;

реверсор находится в положении, противоположном движению.

На практике это случается после отправления с конечной станции, когда один из реверсоров из-за неисправности не развернулся в требуемое положение, и хотя вагон не «повезет» (на нем не соберется силовая схема), все условия «генераторного режима» налицо.

Однако, если этим процессом управлять, то электропоезд можно затормозить тяговыми двигателями, сэкономив при этом колодки, снизив износ бандажей, возвратив в сеть значительное количество электроэнергии.

Процесс реостатного торможения при последовательном возбуждении тяговых двигателей может начаться только при наличии остаточного магнитного потока в двигателе. Для реостатного торможения обмотки возбуждения необходимо реверсировать, чтобы сохранить в них такое же направление тока (следовательно, и магнитного потока), как и в режиме тяги (в якоре при генераторном режиме направление тока изменится), т.е. нужно согласовать направление магнитного потока с направлением генераторного тока.

Допустим, при включенных контакторе ЛК и контактах реверсора В1, В2 (рис. 41, а) ток в режиме тяги проходит в направлении, показанном стрелками, тогда после отключения линейного контактора остаточный магнитный поток обмотки возбуждения будет направлен аналогично.

Если теперь замкнуть якорь через контактор на резистор II, оставив реверсор в прежнем положении, то наведенная в якоре небольшая э.д.с. Е за счет остаточного магнитного потока поступит на обмотку возбуждения в противоположном направлении. Это размагнитит двигатель, и торможение станет невозможным. Если при этом реверсор развернуть в положение «Назад» и замкнуть Ы1, Ы2, то генераторный ток 1г пройдет по обмотке как и в тяге. Он усилит остаточный магнитный поток и обеспечит самовозбуждение машины (рис. 41, б).

Было бы желательно подобный способ распространить на весь цикл торможения. Однако на практике торможение разбивается на несколько этапов. Прежде всего потому, что предпочтение отдается рекуперативному

торможению, позволяющему возвращать электроэнергию в контактную сеть, а двигатели с последовательным возбуждением практически нельзя перевести в режим рекуперации, так как не представляется возможным перейти через промежуточный момент холостого хода, необходимый для перевода электрической машины из двигательного в генераторный режим.

Читать еще:  Что такое прогревные обороты двигателя

а — режим тяги; б — режим реостатного торможения с самовозбуждением

Кроме того, использовать реостатное торможение с самовозбуждением с максимальной скорости тоже нельзя, поскольку их суммарное напряжение достигло бы очень большого значения, опасного и для электрооборудования, и для контактной сети. Применять реостатное торможение до остановки поезда не представляется возможным, потому что при малом вращении якоря двигателя, работающего в генераторном режиме, резко уменьшается его э.д.с, ток и электромагнитный тормозной момент. Поэтому полной остановки достигают с помощью электропневматического тормоза. Иными словами, описанная схема не обеспечивает сохранение тормозной силы при уменьшении скорости до нуля и непригодна для полной остановки поезда.

Схема начинает действовать с рекуперативного торможения, когда суммарное напряжение двигателей (точнее — суммарная э.д.с. генераторов) превышает напряжение контактной сети. Двигатели с последовательным

возбуждением становятся генераторами с независимым возбуждением. Их обмотки возбуждения отключаются от якорей и соединяются с трехфазным тиристорным преобразователем (мостом). Управляемый мост получает питание от синхронного генератора переменного тока, используемого также для собственных нужд электропоезда.

Область применения рекуперации имеет ограничения. Например, рекуперативное торможение при постоянном напряжении на тяговых двигателях ограничивается минимальной скоростью (45 — 50 км/ч), которая зависит от мощности синхронного генератора и насыщения тяговых двигателей, после чего приходится переходить на реостатное торможение с самовозбуждением.

Область рекуперации значительно расширяет использование двигателей, рассчитанных на глубокое ослабление возбуждения (до 18 %). Чтобы повысить коммутационную устойчивость двигателей в режиме электрического торможения и обеспечить надежную работу коллекторов и щеток, напряжение на коллекторах ограничивают до 750 В. При напряжении сети 3000 В это определяет постоянное последовательное соединение четырех двигателей.

Система рекуперативно-реостатного торможения предусматривает:

автоматический переход с рекуперативного торможения на реостатное с самовозбуждением при минимальной скорости движения;

автоматическое замещение рекуперативного торможения реостатным с независимым возбуждением при недостаточном потреблении энергии из контактной сети (при повышении в ней напряжения свыше 4000 В);

автоматическое управление процессами торможения.

Эффективность рекуперативного торможения зависит не только от режимов работы электропоезда, но и от потребления энергии и сети и параметров всей системы энергоснабжения.

Сбор схемы рекуперации начинается с включения линейных контакторов ЛК и ЖТ и контакторов возбуждения КВ и ОВ (рис. 87). Поскольку обмотки возбуждения тяговых двигателей подсоединяются к независимому источнику питания, реверсировать их нет необходимости, реверсоры остаются в том же положении, что и в тяге. Напряжение на якорях повышается, и когда оно превысит напряжение контактной сети, энергия поступает в сеть. После окончания рекуперации и перехода на реостатное торможение с самовозбуждением реостатный контроллер подключает обмотки возбуждения к якорям и пускотормозным резисторам.

Основная трудность использования двух видов электрического торможения (рекуперативного и реостатного) состоит в том, чтобы переход

с одного вида торможения на другой происходил бы без разрыва тока якорей и с минимальным снижением тормозной силы. Для этого в момент перехода параллельно тиристорному возбудителю (управляемому мосту) подключаются шунтирующие резисторы, через которые протекает часть тормозного тока. Если падение напряжения на них будет равно падению напряжения на обмотках возбуждения тяговых двигателей, то переход на самовозбуждение и отключение контура независимого возбуждения контакторами КВ и ОВ произойдет без бросков тока и тормозной силы. Шунтирующие резисторы (по схеме Я11 — Л15) при самовозбуждении остаются введенными в цепь тормозного тока.

Реостатное торможение с самовозбуждением начинается со скоростей 45 — 50 км/ч без предварительного самовозбуждения, что позволяет использовать одни и те же резисторы в тяге и торможении. При достижении максимального значения тока в обмотках возбуждения соответствующий датчик тока подает сигнал на срабатывание реле самовозбуждения, которое включает тормозной контактор Т и приводит в действие реостатный контроллер.

Если во время рекуперации при недостаточном потреблении энергии из контактной сети напряжение на токоприемнике повысится до 3950 В, то сработает реле максимального напряжения РМН, включающее контактор Т. Произойдет переход на замещающее реостатное торможение. Поскольку в составе электропоезда имеется несколько моторных вагонов, реле РМН которых срабатывают не одновременно, замещающее реостатное торможение может включиться на одном или нескольких вагонах в то время, когда оборудование на остальных вагонах продолжит работать в режиме рекуперации.

Силовая схема, обеспечивающая работу в данных режимах, получается наиболее простой при постоянном последовательном соединении тяговых двигателей, подключенных к общим резисторам. Все двигатели одинаково нагружены даже при расхождении характеристик. Недостаток последовательного соединения — склонность колесных пар к юзу.

Неисправности тяговых двигателей

Продолжение таблицы 3

Круговой огонь по коллектору или чрезмерное искрение под щетками, подгар коллектора

Щетки плохо притерты к коллекторным пластинам, неплотное прилегание

Приработать щетки к коллекторным пластинам при малых скоростях движения

Изоляция между коллекторными пластинами выступает над ними, коллектор плохо прошлифован

Продорожить, зачистить и отшлифовать коллектор

Недопустимый износ щеток

Недостаточное или неравномерное нажатие щеток

Отрегулировать нажатие щеток

Проточить и отшлифовать коллектор

Низкое качество щеток, коллектора и изоляторов

Заменить щетки, изоляторы

Оборван проводник обмотки якоря

Отремонтировать обмотку в деповских условиях

Короткое замыкание в обмотке дополнительных полюсов

Отыскать поврежденную катушку дополнительного полюса и заменить ее (в депо)

Обеспечить свободный ход щетки

Межвитковое замыкание или выпаивание секции обмотки якоря из петушков коллектора

Отремонтировать якорь в деповских условиях

Потеки смазки внутри тягового двигателя

Снять потеки и наблюдать за подшипниковым узлом. Если повреждение повторится, снять тяговый двигатель с тележки, разобрать подшипниковый узел и заменить подшипник

Устранить перекос, подтянув болты крышки подшипника

Снять гяговый двигатель с тележки, разобрать подшипниковый узел, заменить подшипник и смазку

Перекрытие или пробой кронштейна щеткодержателя

Попадание влаги в тяговый двигатель, перенапряжение, грязный изолятор или кронштейн щеткодержателя

Протереть тяговый двигатель чистой салфеткой, смоченной бензином, заменить изолятор или кронштейн щеткодержателя

Пробой изоляции обмоток якорей и полюсов

Механические повреждения, резкое снижение сопротивления изоляции при частых перенапряжениях на двигателях, попадании влаги, пыли и т.д.

Устранить повреждения в депо

Сильное искрение под щетками и срабатывание токовой защиты

Механическое повреждение изоляции, старение изоляции, снижение изоляционных свойств вследствие частых перенапряжений

Отключить тяговый двигатель, по прибытии в депо устранить повреждение

Чрезмерное нагревание коллектора

Щетки слишком сильно прижаты к коллекторным пластинам

Установить нормальное нажатие щеток

Чрезмерное нагревание якоря

Замыкание между секциям и обмоток якоря или коллекторными пластинами

Отключить тяговый двигатель, по прибытии в депо отремонтировать якорь

Порванные сетки в вентиляционных отверстиях или торчащие из них остатки бандажей

Размотаны бандажи якоря и часть обломков отброшена в сторону вентиляционных отверстий

Отключить тяговый двигатель, по прибытии в депо отремонтировать

На моторном вагоне срабатывает быстродействующий выключатель во время первой поездки после замены двигателя

Неправильный монтаж проводов

Пересоединить концы тягового двигателя

Основные технические данные двигателя 1 ДТ.003

Напряжение на коллекторе, В

номинальная мощность, кВт

Наименьший коэффициент ослабления возбуждения

Ссылка на основную публикацию
Adblock
detector