Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электро двигатель как гениратор

Электро двигатель как гениратор

Рис. 10.1. Принципиальная схема генератора

Рис. 10.2. Принципиальная схема электродвигателя.

Если в магнитное поле поместить проводник с током в виде замкнутой рамки (рис. 10.2), то под действием сил, приложенных к сторонам рамки, она придет во вращение. Таким образом, проводник с током в магнитном поле можно рассматривать как элементарный электрический двигатель.

У большинства электрических машин магнитное поле создается не постоянным .магнитом, а электрическим током, протекающим по специальным катушкам машины. Эти катушки называют обмотками возбуждения.

Электрическая схема электрических машин состоит из неподвижных и подвижных обмоток.

Электрические машины являются машинами вращательного действия. Основными частями их являются: неподвижный статор и вращающийся ротор, разделенные зазором (рис. 10.3).

Статор и ротор имеют стальные сердечники. Сердечник набран из изолированных друг от друга листов электротехнической стали. На внутренней стороне сердечника статора и на наружной стороне сердечника ротора имеются параллельные продольные пазы, в которые укладываются обмотки. Ротор закрепляется на валу, который вращается в подшипниках. Подшипники встроены в торцовые крышки, которые болтами крепятся к станине. На валу ротора устанавливается также вентилятор, служащий для охлаждения обмоток и сердечников.

Станина имеет лапы для крепления машины к фундаменту или специальный фланец с отверстиями под крепления.

Рис. 10.3. Конструктивная схема электрических машин.

Асинхронные двигатели. Асинхронные двигатели состоят из двух основных частей: статора и ротора. На статоре располагается трехфазная обмотка (у трехфазных двигателей). Концы обмоток присоединяют к питающей сети. Обмотка имеет шесть выводных концов с металлическими бирками, расположенных в коробке и имеющих обозначение начал трехфазной обмотки С1, С2, СЗ и концов С4, С5, Сб. Ротор также имеет обмотку. В зависимости от типа обмотки асинхронные электродвигатели бывают с короткозамкнутым и с фазным ротором.

В короткозамкнутом роторе обмотка представляет собой цилиндрическую клетку, образованную отдельными стержнями, уложенными в пазы ротора и соединенными с торцовых сторон кольцами («беличье колесо»).

Обмотка фазного ротора выполнена изолированным проводом и уложена в пазы ротора. Как и обмотка статора, она состоит из трех (или группы) катушек. Начала катушек соединены в звезду, а концы подведены к контактным кольцам на валу ротора. По кольцам скользят щетки, закрепленные в неподвижных щеткодержателях. Щетки соединяют обмотку ротора с реостатом, находящимся вне двигателя и служащим для уменьшения пусковых токов или регулирования скорости вращения.

Электродвигатели с короткозамкнутым ротором применяют в электроприводе, не требующем регулирования скорости. Основным недостатком их является большая сила тока в момент пуска двигателя, превышающая в 5…7 раз ток при установившихся оборотах.

Двигатели с фазным ротором позволяют регулировать скорость вращения. Кроме того, включение в цепь ротора пускорегулирующе- го реостата позволяет уменьшить силу пускового тока и увеличить пусковой момент.

Каждый двигатель снабжается паспортом — металлической табличкой, закрепляемой на корпусе двигателя, на которой указывается завод-изготовитель, марка двигателя и основная характера стика двигателя.

Если в паспорте указано напряжение 220/380 В, то электродвигатель можно включать в сеть напряжением 220 и 380 В.

При напряжении 220 В обмотки статора соединяют треугольником (рис. 10.4, а) —начало первой обмотки С1 соединяют с концом третьей С6, начало второй С2 с концом первой С4, а конец второй С5 с началом третьей СЗ. Соединенные концы подводят к трем фазам сети.

Рис. 10.4. Схемы соединения обмоток статора трехфазного двигателя.

При напряжении 380 В обмотки соединяют звездой (рис. 10.4, б, в) — все начала или все концы обмоток соединяют вместе, а свободные концы включают в трехфазную сеть.

Двигатели постоянного тока применяют в тех случаях, когда требуется плавное и глубокое регулирование скорости вращения.

Двигатель постоянного тока (рис. 10.5) состоит из неподвижной станины, вращающегося якоря с коллектором и щеток со щеткодержателями. Внутри станины укрепляют главные полюсы с обмотками возбуждения, которые создают магнитный поток. Стержни обмотки якоря соединены по определенной схеме с пластинами коллектора. Щетки, скользящие по пластинам коллектора, соединяют обмотку якоря с внешней сетью. С внешней сетью соединяется также обмотка возбуждения;

Читать еще:  Что такое дифференциал двигателя

Для уменьшения искрения на коллекторе на станине установлены дополнительные полюса.

Регулирование частоты вращения ротора достигается изменением силы тока обмотки возбуждения. Обмотки возбуждения двигателей постоянного тока питаются постоянным током. Различают двигатели с независимым возбуждением и с самовозбуждением. В двигателях с независимым возбуждением обмотка возбуждения питается от постороннего источника. В машинах же с самовозбуждением она питается от якорной обмотки этого же двигателя. Возбуждение при этом может осуществляться при параллельном, последовательном или смешанном соединениях, когда одна обмотка возбуждения соединена с якорной параллельно, а другая — последовательно. Соответственно этому электродвигатели называются шунтовые, сериесные и ком- паундные.

Все электрические машины характеризуются обратимостью, т. е. возможностью работать как в качестве электродвигателя, так и в качестве генератора.

Рис. 10.5. Электродвигатель постоянного тока:
1 — коллектор; 2 — щеткодержатель; 3 — якорь; 4 — главный полюс; 5 — обмотка возбуждения; 6 — станина; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря.

Генератор устроен принципиально так же, как и электродвигатель. В отличие от него в генераторе принудительно вращается ротор (якорь). С помощью генератора механическая энергия вращающегося якоря превращается в электрическую. Подобно электродвигателям, генераторы бывают переменного и постоянного тока. Генераторы постоянного тока бывают шунтовые, сериесные и компаундные.

Асинхронный электродвигатель в качестве генератора

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Рисунок 1. Трехфазная асинхронная электрическая машина Асинхронные электродвигатели были разработаны еще в конце 19-го века М. О. Доливо-Добровольским и с тех пор не претерпели каких-либо действительно значительных изменений. Тем не менее именно такие электрические машины, особенно их модификации с короткозамкнутым ротором, получили наибольшее распространение практически во всех отраслях человеческой деятельности, что объясняется их универсальностью, надежностью и на порядок более низкой ценой в сравнении с двигателями постоянного тока.

С учетом приведенных выше качеств выглядит вполне логичным преимущественное использование именно асинхронных электродвигателей в качестве генераторов. Причем по сугубо экономическим соображениям это делается не только тогда, когда необходимо получить переменный, но и постоянный ток.

Генератор 380 В на базе трехфазной асинхронной электрической машины

Рисунок 2. Стандартная схема подключения асинхронного электродвигателя в качестве генератора Трехфазный генератор 380 В на базе асинхронного электродвигателя переменного тока получают путем отключения питающей сети и подсоединения его рабочего вала к валу механического двигателя. Такая конфигурация благодаря принципу обратимости электрических машин позволяет при достижении синхронной частоты вращения снять с зажимов статорной обмотки некоторую ЭДС, генерируемую остаточным магнитным полем. Если при этом к зажимам статорной обмотки подключить конденсаторную батарею, то в соответствующих обмотках потечет емкостной ток, выполняющий в данном случае роль намагничивающего фактора.

Критическим параметром всей установки является емкость конденсаторной батареи, которая должна превышать некоторое пороговое значение С0 — только при выполнении данного условия возможно самовозбуждение генератора и установление на обмотках его статора симметричной трехфазной системы напряжений.

Нетрудно догадаться, что конденсаторная батарея, точнее — ее емкость, играющая ключевую роль во всей схеме, является самым уязвимым местом. Дело в том, что поддержание заданного напряжения при увеличении нагрузки на генератор, особенно ее реактивной составляющей, для поддержания необходимого напряжения требуется постоянно наращивать емкость конденсаторной батареи путем увеличения подключенных конденсаторов. В цифрах картина выглядит следующим образом:

Стоит отметить, что некоторого смягчения воздействия реактивной составляющей позволяют достигнуть компенсаторы реактивной мощности серий КМ1/КМ2. При желании их аналоги можно изготовить и самостоятельно на основе конденсаторов МБГТ/ МБГП/ МБГО и др. за исключением электролитических.

Однофазный генератор 220 В на базе асинхронного электродвигателя переменного тока

Рисунок 3. Схема подключения однофазного генератора 220 В на базе асинхронного электродвигателя переменного тока Как уже отмечалось выше, трехфазные генераторы используются далеко не только для получения переменного напряжения. Еще одним распространенным способом использования асинхронного электродвигателя в качестве генератора является подключение, подразумевающее использование конденсаторной батареи в тандеме только с одной обмоткой. Такой ход позволяет уменьшить емкость конденсаторов и снизить нагрузку на первичный механический двигатель, что, в свою очередь, позволяет сэкономить недешевое природное топливо, однако и вырабатываемая мощность значительно падает. Экономический эффект наиболее ощутим при частой работе генератора в режиме холостого хода, что особенно актуально для бытового использования.

Читать еще:  Что ремонтировать если троит двигатель

Емкость используемых в данной схеме конденсаторов напрямую зависит от характера нагрузки: активная нагрузка (СВЧ, освещение помещений, паяльные станции) требует меньшей емкости, индуктивная (телевизоры, холодильники, стиральные машины) — большей.

Электро двигатель как гениратор

Бесконтактный электродвигатель постоянного тока – это электрическая машина постоянного тока, в которой механический коллектор заменен полупроводниковым коммутатором, поэтому его также называют вентильный электродвигатель.

Бесконтактные двигатели обладают такими важными функциональными свойствами, как:
  • длительная наработка;
  • высокая надежность запуска после длительного пребывания в нерабочем состоянии;
  • пригодность для работы во взрыво-и пожароопасных средах;
  • работоспособность при низких давлениях окружающей среды.

Компания «НаукаСофт» занимается разработкой и созданием широкого спектра электрических машин – электродвигателей и генераторов для автономных потребителей, таких как магнитоэлектрические стартер-генераторы и силовые электродвигатели для привода авиационных силовых установок. Предприятие проводит полный курс разработки, от эскизного моделирования и предварительных расчетов до выпуска полной конструкторской документации по готовому изделию. За сотрудниками стоит огромный опыт конструирования различных агрегатов, и в своих новых разработках «НаукаСофт» внедряет качественно новые технологичные решения, бережно относясь к опыту старших поколений инженеров.

Пример реализации
Двигатель-генератор ДГ-30НС

В настоящий момент компания «НаукаСофт» совместно с ОАО «Сарапульский электрогенераторный завод» разработала и изготовила двигатель-генератор ДГ-30НС. ДГ-30НС Двигатель предназначен для использования в качестве привода силовой установки перспективных самолётов и вертолётов на электрической тяге, в том числе разрабатываемого полностью электрического самолёта АВФ-32НС, с возможностью рекуперации энергии во время полёта. Отработанные технические и технологические решения для 30 кВт изделия позволяют масштабировать его по мощности (от 3 до 500 кВт).

Применение в составе двигателя-генератора центробежного охлаждающего вентилятора дает возможность ему работать эффективно при вращении как в одну сторону, так и в другую сторону.

За счет использования сдвоенных подшипников в переднем щите ДГ-30НС имеет возможность воспринимать осевые нагрузки как в прямом направлении (работа в двигательном режиме), так и в обратном направлении (работа в генераторном режиме при авторотации вентилятора силовой установки).

Основные характеристики двигателя-генератора ДГ-30НС
Габаритные размеры:

Учитывая имеющийся опыт компании «НаукаСофт» в разработке и изготовлении вышеуказанных устройств, предлагаем Вам воспользоваться нашими услугами по изготовлению и поставке бесконтактных электродвигателей постоянного тока для летательных аппаратов с соответствующими характеристиками, а при необходимости в кратчайшие сроки провести работы по разработке и изготовлению устройств с иными требуемыми характеристиками.

Бесплатформенная инерциальная навигационная система БИНС-500НС

Автономная интегрированная бесплатформенная инерциальная навигационная система

Распределенная инерциальная навигационная система (РИНС)

Информационно-измерительный комплекс, объединяющий в себе бесплатформенные инерциальные навигационные системы на базе волоконно-оптических и микромеханических измерителей

ИРУ-27

Интеллектуальное распределительное устройство (ИРУ-27) является первым в России цифровым специализированным бортовым устройством распределения электроэнергии и предназначено для применения в системах электроснабжения летательных аппаратов.

Локальный центр управления нагрузками ЛЦУН-Т

Бесконтактное коммутационное устройство управляемого распределения электроэнергии

Вихревой электронасос (ВНТ-500) для топливных систем

Наша организация разработала и изготовила опытный образец электронасоса для топливных систем агрегатов, устройств и транспортных средств, работающих в тяжелых условиях эксплуатации. Насос предназначен для подачи топлива к двигателю, бустерному (подкачивающему) и перекачивающим струйным насосам.

Рама для авиационного оборудования по стандарту ARINC600

НаукаСофт совместно с ALAMO Engineering GmbH разрабатывает и поставляет рамы для установки авиационного оборудования изготовленные по стандарту ARINC-600.

Управляемое коммутационное устройство УКУ-НС

Исполнительное устройство управления, контроля и защиты силовых электрических сетей постоянного и переменного тока

Управляемое коммутационное устройство УКУ1-500НС

Исполнительное устройство управления, контроля и защиты силовых электрических сетей постоянного и переменного тока

Цифровой управляющий модуль ЦУМ-НС

Специализированный бортовой вычислитель, предназначенный для управления всеми агрегатами и устройствами автономных систем электроснабжения, а также для организации информационного взаимодействия с вычислителями других систем и выдачи информации экипажу.

Читать еще:  Что такое вакуумный датчик двигателя

Двигатель-генератор ДГ-30НС

Бесконтактный электродвигатель постоянного тока – это электрическая машина постоянного тока, в которой механический коллектор заменен полупроводниковым коммутатором, поэтому его также называют вентильный электродвигатель.

Авиационный тяговый электродвигатель ДТ-60 НС

Авиационный тяговый электродвигатель ДТ-60 НС, разработанный компанией «НаукаСофт» и предназначенный для установки на полностью электрический самолет.

Авиационные генераторы МЭГ-НС

Авиационный генератор МЭГ-НС

129085, Москва, ул.Годовикова, 9 стр.3 Как добраться

Можно ли использовать электродвигатель как генератор

Содержание

  1. Законы, позволяющие использовать асинхронный электродвигатель как генератор
  2. Способы переделки электродвигателя в генератор
  3. Торможение реактивной нагрузкой
  4. Самовозбуждение электродвигателя
  5. Что нужно знать, чтобы электродвигатель работал как генератор
  6. Насколько эффективно использование электродвигателя в качестве генератора

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]