Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронная схема управления асинхронным двигателем

Электронная схема управления асинхронным двигателем

В настоящее время практически 60 % всей вырабатываемой электроэнергии потребляется электродвигателями. Поэтому достаточно остро стоит задача экономии электроэнергии и уменьшения стоимости электродвигателей. Трехфазные асинхронные двигатели считаются достаточно универсальными и наиболее дешевыми, но в то же самое время подключать их к однофазной сети и управлять частотой вращения достаточно сложно.

Заманчива перспектива, увеличения номинальной частоты вращения двигателя, в двое и более раз или использование малогабаритных двигателей рассчитанных на частоту питающей сети 400-1000 Гц и имеющие меньшую массу и стоимость. В данной радиолюбительской конструкции предпринята попытка решения проблемы.

Предлагаемая система управления работает от однофазной сети 220вольт и позволяет плавно менять обороты двигателя и отображать частоту инвертора на двухразрядном цифровом индикаторе. Дискретность изменения частоты инвертора составляет 1 Гц и регулируется в пределах от 1 до 99 Гц. В предлагаемой схеме используется числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц позволяющий получать синусоидальный ток на обмотках двигателя.

Существует также более перспективный, Широтно Импульсный Метод (ШИМ, PWM — англ.) использующий управление с обратными связями и без них. С частотами модуляции от 3 до 20 кГц и всевозможные методы коммутации, позволяющие увеличить выходное напряжение инвертора на 15-27% по сравнению с питающей сетью т.е. до 354-390 вольт.

Схема, изображённая на рисугке выше, состоит из управляющего устройства D2, применен микроконтроллер PIC16F628-20/P работающий на частоте 20 мГц, кнопок управления Пуск (SA1), Стоп (SA2), кнопки увеличения и уменьшения частоты соответственно SA3.SA4. Двоично-семисегментного дешифратора D1, светодиодных матриц HG1,HG2. Узла торможения VT9,VT10,K1.

В силовой цепи используется трехфазный мостовой драйвер D4 IR2130 фирмы INTERNATIONAL RECTIFIER имеющий три выхода для управления нижними ключами моста и три выхода для ключей с плавающим потенциалом управления. Данная микросхема имеет систему защиты по току которая в случае перегрузки выключает все ключи а также предотвращает одновременное открывание верхних и нижних транзисторов и тем самым предотвращает протекание сквозных токов.

Для сброса защиты необходимо установить все единицы на входах HNx, LNx. В качестве силовых ключей применены МОП транзисторы IRF740. Цепь перегрузки состоит из датчика тока R10 делителя напряжения R7-R9 позволяющего точно установить ток срабатывания защиты, и интегрирующей цепочки R6-C3 которая предотвращает ложное срабатывание токовой защиты в моменты коммутаций.

Напряжение срабатывания защиты составляет 0,5 вольт по входу ITRP (D4). После срабатывания защиты на выходе FAULT (открытый коллектор) появляется логический ноль, зажигается светодиод HL1, и закрываются все силовые ключи. Для более быстрой разрядки емкостей затворов силовых транзисторов можно установить параллельно резисторам, вклюценным в цепь затвора, диодов в обратном направлении. Двигатель необходимо включить по схеме звезды.

Источник питания состоит из мощных диодов VD11-VD14, токоограничительного резистора R20, фильтрующей емкости СЮ, емкость С11 предотвращает всплески, которые будут возникать при коммутациях на паразитных индуктивностях схемы. А также маломощного трансформатора Т1, стабилизатора напряжения 15 вольт D5 для питания схемы драйвера, и стабилизатора напряжения 5 вольт D3 для питания микроконтроллера и схемы индикации.

При использовании более мощного двигателя вместо транзисторов IRF740 можно использовать IGBT транзисторы типа IRGBC20KD2-S, IRGBC30KD2-S при этом диоды VD7-VD10, VD15.VD16 следует выпаять. Конденсатор С11 должен быть типа К78-2 на 600-1000 Вольт. Вместо VD1-VD6 желательно применить сверх быстрые диоды типа 10DF6, а емкости С15-С17 уменьшить до 2,2-4,7 микрофарад, которые должны быть рассчитаны на напряжение 50 вольт.

Трансформатор Т1 мощностью 0,5-2 Вт от калькулятора с перемотанной вторичной обмоткой. Обмотка намотана проводом диаметром 0,2 и должна выдавать 19-20 вольт. Печатная плата выполнена на одностороннем стеклотекстолите, для того чтобы можно было воспользоваться утюго-лазерной технологией изготовления. Светодиод HL1, матрицы HG1.HG2, кнопки SA1-SA4 установлены со стороны дорожек.

HEX формат программы находится в табл. 1. В момент записи в нулевую ячейку ОЗУ необходимо поместить шестнадцатеричное число от 1 до 63, начальная частота инвертора.

Программа выполнена таким образом что двигатель стартует с плавным набором скорости от 0 до установленной частоты примерно за 2 секунды, эта константа находится в ячейках 0207 и 0158 таблицы. Если необходимо увеличить скорость нарастания в два раза то вместо кодов 3005 необходимо записать 300А.

Читать еще:  Двигатели opel astra z14xep характеристики

HEX данные:

Микроконтроллерная система управления асинхронным трехфазным двигателем

В настоящее время практически 60% всей вырабатываемой электроэнергии потребляется электродвигателями. Поэтому достаточно остро стоит задача экономии электроэнергии и уменьшения стоимости электродвигателей.

Трехфазные асинхронные двигатели считаются достаточно универсальными и наиболее дешевыми, но подключать их к однофазной сети и управлять частотой вращения достаточно сложно.

Рис. 1. Числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц.

Заманчива перспектива увеличения номинальной частоты вращения двигателя в двое и более раз или использование малогабаритных двигателей, рассчитанных на частоту питающей сети 400. 1000 Гц и имеющихменьшую массу и стоимость. В данной радиолюбительской конструкции предпринята попытка решения проблемы.

Предлагаемая система управления работает от однофазной сети 220 В и позволяет плавно менять обороты двигателя и отображать частоту инвертора на двухразрядном цифровом индикаторе.

Дискретность изменения частоты инвертора составляет 1 Гц и регулируется в пределах от 1 до 99 Гц. В предлагаемой схеме используется числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц (рис.1), позволяющий получать синусоидальный ток на обмотках двигателя.

Существует более перспективный, широтно-импульсный метод (ШИМ, PWM — англ.), использующий управление с обратными связями и без них, с частотами модуляции от 3 до 20 кГц и всевозможные методы коммутации, позволяющие увеличить выходное напряжение инвертора на 15.27% по сравнению с питающей сетью, т.е. до 354.390 В.

Принципиальная схема

Схема, показанная на рис.2, состоит из: управляющего устройства D2 (применен микроконтроллер PIC16F628-20/P, работающий на частоте 20 МГц), кнопок управления «Пуск» (SA1), «Стоп» (SA2), кнопок увеличения и уменьшения частоты SA3 и SA4 соответственно, двоично-семисегментного дешифратора D1, светодиодных матриц HG1 и HG2, узла торможения VT9, VT10, K1.

В силовой цепи используется трехфазный мостовой драйвер D4 IR2130 фирмы International Rectifier, имеющий три выхода для управления нижними ключами моста и три выхода для ключей с плавающим потенциалом управления.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем (продолжение).

Данная микросхема имеет систему защиты по току, которая в случае перегрузки выключает все ключи, а также предотвращает одновременное открывание верхних и нижних транзисторов, тем самым предотвращает протекание сквозных токов. Для сброса защиты необходимо установить все единицы на входах HNx, LNx. В качестве силовых ключей применены МОП-транзисторы IRF740.

Цепь перегрузки состоит из датчика тока R10, делителя напряжения R7R9, позволяющего точно установить ток срабатывания защиты, и интегрирующей цепочки R6C3, которая предотвращает ложное срабатывание токовой защиты в моменты коммутаций. Напряжение срабатывания защиты составляет 0,5 В по входу ITRP (D4).

После срабатывания защиты на выходе FAULT (открытый коллектор) появляется лог.»0″, зажигается светодиод HL1 и закрываются все силовые ключи.

Для более быстрой разрядки емкостей затворов силовых транзисторов можно установить параллельно резисторам, включенным в цепь затвора, диоды в обратном направлении. Двигатель необходимо включить по схеме звезды.

Источник питания состоит из мощных диодов VD11-VD14, токоограничительного резистора R20, фильтрующей емкости C10, емкости C11, предотвращающей всплески, которые возникают при коммутациях на паразитных индуктивностях схемы, а также маломощного трансформатора T1, стабилизатора напряжения 15 В D5 для питания схемы драйвера, стабилизатора напряжения 5 В D3 для питания микроконтроллера и схемы индикации.

При использовании более мощного двигателя вместо транзисторов IRF740 можно использовать IGBT-транзисторы типов IRGBC20KD2-S, IRGBC30KD2-S, при этом диоды VD7-VD10, VD15, VD16 следует выпаять. Конденсатор C11 типа К78-2 на напряжение 600. 1000 В. Вместо VD1-VD6 желательно применить сверхбыстрые диоды типа 10DF6, а емкости С15-С17 уменьшить до 2,2. 4,7 мкФ, которые должны быть рассчитаны на напряжение 50 В. Трансформатор T1 мощностью 0,5.2 Вт от калькулятора с перемотанной вторичной обмоткой. Обмотка намотана проводом 00,2 и должна выдавать 19.20 В.

Печатная плата и прошивка МК

Печатная плата (рис.3) выполнена из одностороннего стеклотекстолита, для того чтобы можно было воспользоваться утюго-лазерной технологией изготовления. Светодиод HL1, матрицы HG1, HG2, кнопки SA1-SA4 установлены со стороны дорожек.

Рис. 3. Печатная плата.

HEX-формат программы приведен в таблице. В момент записи в нулевую ячейку ОЗУ необходимо поместить шестнадцатеричное число от 1 до 63, начальная частота инвертора.

Читать еще:  Амперы при запуске двигателя

Коды для прошивки в текстовом формате: Скачать

Программа выполнена таким образом, что двигатель стартует с плавным набором скорости от 0 до установленной частоты примерно за 2 с (эта константа находится в ячейках 0207 и 0158 таблицы). Если нужно увеличить скорость нарастания в два раза, то вместо кодов 3005 необходимо записать 300A.

С.М. Абрамов, г. Оренбург, Россия. Электрик-2004-08.

  1. Козаченко В. Основные тенденции развития встроенных систем управления двигателями и требования к микроконтроллерам//СЫр№ш -1999. — №1.
  2. Обухов Д, Стенин С., Струнин Д, Фрадкин А. — Модуль управления электроприводом на микроконтроллере PIC16C62 и драйвере IR2131//ChipNews. — 1999. -№6.

Схема управления асинхронными трехфазными двигателями

Любой домашний мастер, необязательно хороший электрик, в своем арсенале имеет много универсальных станков и инструментов, использует электрические приборы, работающие от асинхронных двигателей, которыми можно пользоваться на расстоянии в автоматическом режиме.

Местное управление трехфазным двигателем
Рассмотрим на примере 3-х фазной системы алгоритм управления электродвигателем, по которому работает электрическая схема.

От электрического распред щитка мастерской, оборудованного вводными автоматами и рубильниками, посредством силового трехжильного кабеля подводится напряжение на силовые контакты ПМ 13 магнитного пускателя через подключенные токовые обмотки реле ТП.
Все провода фаз необходимо подбирать с учетом передаваемой мощности, которая вызывает нагрев металла. Для наглядности восприятия схемы фазы выделены разными цветами.
Разрывную способность контактов у пускателя следует сочетать с учетом электрической мощности двигателя под максимальной нагрузкой. Эти данные указываются в паспортах на электрическое оборудование и информационных табличках, прикрепленных к корпусу.

Состав приборов и их назначение
Обычная схема управления использует электрические приборы:
• магнитный пускатель;
• токовое тепловое реле класса РТЛ;
• две раздельные либо сдвоенные кнопки с обязательной пружинной конструкцией самовозврата.
Для защиты электродвигателя от перегрузок по току и/или исключения перегрева провода обмоток в силовую цепь через контактные зажимы КРЛ-клеммника подключаются токовые обмотки теплового реле ТП. Диэлектрический прочный корпус устройства прикрепляется непосредственно к магнитному пускателю либо — на Din-рейку. Предусмотрен также старый метод установки “под винт”.
Выпускаемые современные полупроводниковые тепловые реле снабжаются дополнительно такими функциями защиты, как:
• нарушения симметрий токов между фазами, которые создают неравномерную нагрузку на обмотки;
• пропадания напряжения в любой из фаз.
Электрическая схема рассматриваемых твердотельных реле способна выдержать напряжение 600 вольт. У нее реализована возможность регулирования токов несрабатывания защиты для учета мощности применяемого двигателя на номинальные токи в 10, 16 и более ампер.

Алгоритм управления
На схему управления подводится напряжение от одной из фаз и нуля. Нормально замкнутый контакт ТП-1 у теплового реле РТЛ в обычном режиме разрешает работу магнитному пускателю и, соответственно, электродвигателю. Размыкание контакта ТП-1 приводит к обесточиванию обмотки ПМ и отключению контактов ПМ-13, останову электродвигателя.
Запуск схемы происходит замыканием контакта Кн1 от нажатия кнопки “Пуск”, которая подает напряжение на обмотку ПМ. Срабатывающий пускатель замыкает одновременно свои силовые контакты ПМ-13, а в схеме управления его контакт ПМ-4 подключает на удержание обмотку пускателя ПМ. Таким образом предотвращается разрыв цепи обмотки пускателя от действия пружины самовозвратного контакта Кн1.
Двигатель будет работать до разрыва цепи управления одним из способов:
• нажатием кнопки “Стоп”;
• защитным отключением от токового реле перегрузки.

Дистанционное управление трехфазным двигателем
Многим двигателям, установленным на станках, достаточно местного управления. Но отдельным устройствам, наподобие погружных насосов, требуется дистанционное управление, иногда даже с разных мест.
Для этого в электрическую схему управления двигателя достаточно добавить еще одну сдвоенную кнопку (Пуск-д, Стоп-д). Ее следует смонтировать на удаленном рабочем месте и подключить отдельным кабелем или проводами в защитном кожухе.

Контакты “Кн1д” соединяются жилами кабеля по параллельной схеме с одноименными контактами Кн1, а нормально замкнутый контакт “Стоп-д” врезается последовательно с Кн2.
Для этого жилы кабеля на удаленном рабочем месте подсоединяются к кнопке Кн2д и подводятся к кнопке “Стоп”. С любого контакта Кн2 отключают провод от действующей схемы и подключают его (желательно через клеммник) с одним из кончиков кабеля от кнопки дистанционного останова Кн2д. Второй кончик от удаленной кнопки подключают на освободившийся контакт Кн2.

Читать еще:  Lexus rx450h какое масло двигатель

Особенности управления однофазным двигателем
Описанные выше алгоритмы полностью пригодны для работы однофазных устройств. Электрическая схема для их управления упрощается: напряжение к электродвигателю подключается однофазным пускателем через обмотку однофазного токового реле.

Отправить заявку или сообщение Вы можете через форму обратной связи, или позвонить +7 (495) 545-44-32.

Книга: Башенные краны

Навигация: Начало Оглавление | Другие книги | Отзывы:

§ 51. Тиристорная схема управления асинхронным электродвигателем

В связи с увеличением длины канатов крюковой подвески на кранах с большой высотой подъема возникла необходимость в плавном регулировании скорости механизма поворота, поэтому на этих кранах применяют специальные схемы электроприводов. В схеме на рис. 99 механизм поворота приводится асинхронным электродвигателем Ml с фазным ротором, управляемым с помощью тиристоров.

Рис. 99. Электропривод механизма поворота с тиристорным управлением:

а — функциональная электрическая схема, б — механические характеристики привода; ГПН — блок генератора пилообразного напряжения, ФИ — блок формирования импульсов, УМ И — блок усиления мощности импульсов, БТР — блок тормозного режима, ОВГ — обмотка возбуждения тахогенератора; G — тахогенератор, V9 — выпрямитель цепи обратной связи по току, U — задающее напряжение

В приводе использован параметрический способ регулирования скорости, основанный на изменении напряжения, подводимого к статору электродвигателя. Развиваемый электродвигателем вращающий момент пропорционален квадрату подводимого напряжения, поэтому изменение напряжения на зажимах электродвигателя вызывает изменение частоты вращения его ротора.

На схеме тиристоры VI — V6 включены встречно-параллельно в каждую фазу статора электродвигателя и выполняют роль быстродействующих бесконтактных переключателей. Напряжение, подводимое к электродвигателю, изменяется управлением проводимости тиристоров. Для получения жестких механических характеристик в схеме предусмотрена обратная связь по частоте вращения, выполненная с помощью тахогенератора G, и динамическое торможение асинхронного электродвигателя, которое осуществляется с помощью тиристоров V7 и V8, причем переход от двигательного режима работы электродвигателя к тормозному режиму происходит автоматически с помощью блока тормозного режима БТР.

Тиристорами управляют с помощью электронной схемы. Управляющее напряжение постоянного тока снимается с резистора с переменным сопротивлением, подается в блок генератора пилообразного напряжения ГПН и сравнивается с пилообразным напряжением синхронным и синфазным с сетью. Резистор связан с командоконтроллером, и величина его сопротивления зависит от положения рукоятки управления. При установке рукоятки управления в одно из положений вправо (влево) в результате отклонения напряжения пилообразной формы относительно напряжения управления появляется импульс, длительность которого зависит от значения напряжения управления, т. е. от положения, в которое установлена рукоятка управления. Этот импульс поступает в блок формирования импульса ФИ, в котором происходит его предварительное усиление и преобразование в импульс соответствующей формы. Преобразованный импульс поступает в блок усиления мощности импульсов У МИ, где усиливается до значений, необходимых для надежного управления тиристорами, после чего поступает на управляющие электроды тиристоров. При этом открыты и управляются тиристоры VI — V6, тиристоры V7 и V8 заперты и электродвигатель Ml работает в двигательном режиме.

В двигательном режиме работы привода напряжение управления больше напряжения обратной связи, снимаемого с тахогенератора G, и ток протекает в соответствии с полярностью напряжения управления. Момент сопротивления механизма поворота в процессе работы крана может изменяться в зависимости от ветровой нагрузки и подветренной площади обрабатываемого груза. При изменении знака момента сопротивления на валу электродвигателя система начинает ускоряться. Напряжение обратной связи становится больше напряжения управления, вследствие чего изменяется направление тока в цепи и появляются импульсы в блоке БТР. Эти импульсы поступают в блок ФИ, который запирает тиристоры V2, V3, V5, V6 и открывает тиристоры V7, V8 (тиристоры VI и V4 остаются открытыми). Электродвигатель начинает работать в режиме динамического торможения, затормаживая механизм поворота. Когда частота вращения привода уменьшится до величины, заданной управлением, напряжение обратной связи снова станет меньше напряжения управления. При этом исчезнут импульсы в блоке БТР, блок ФИ запрет тиристоры V7 и V8, откроет тиристоры V2, V3, V5, V6 и электр двигатель автоматически перейдет в двигательный режим работы.

Механические характеристики привода (рис. 99, б) обеспечивают работу механизма поворота крана с различной скоростью, величина которой зависит от положения рукоятки командоконтроллера.

Ссылка на основную публикацию
Adblock
detector