Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Газовый двигатель низкого давления

Газовый двигатель низкого давления

В ближайшее время наши специалисты ответят на ваш запрос.

Следите за нашими новостями в социальных сетях

ЭНЕРГАЗ: опыт подготовки и компримирования низконапорного ПНГ

Понятие «низконапорный газ» (ННГ) трактуется по-разному. Газовики рассматривают ННГ как природный газ на устье добывающей газовой скважины – с низким уровнем давления, недостаточным для подачи газа на компрессорную станцию или установку подготовки газа.

Нефтяники понимают под низконапорным газом попутный нефтяной газ (ПНГ) с концевых ступеней сепарации нефти, не обладающий уровнем давления, необходимым для его транспортировки от установки подготовки нефти (УПН) до газоперерабатывающего завода или автономного энергоцентра месторождения.

Например, у газа концевой ступени УПН Варандейского месторождения давление практически отсутствует, и транспортировку ПНГ здесь обеспечивает компрессорная станция низкого давления «ЭНЕРГАЗ».

Понятие ННГ не сводится только к уровню давления газа – как важному фактору добычи. Эксперты предлагают и иные варианты определений ННГ. Так, к низконапорным промысловым газам относят запасы газовых и газоконденсатных месторождений, промышленное использование которых при глубоком компримировании и магистральном транспорте становится экономически нерентабельно.

Более емким видится определение, привязанное одновременно к экономическому и к техническому аспектам. Низконапорный газ – это газ, присутствующий в технологических схемах разработки, добычи и переработки продукции месторождений, вовлечение которого в промышленный оборот достигается решением специальных технических задач и дополнительными затратами.

Проблема добычи и использования ННГ состоит в следующем. Давление газа в пласте снижается по мере его выработки. И возникает момент, когда давления газа, поступающего из скважин, недостаточно для его подачи в газопроводы без проведения подготовительных мероприятий. Из-за весомых затрат дальнейшее использование ННГ становится нерентабельным по совокупной цене добычи, газоподготовки и доставки к конечному потребителю. При этом в категорию «низконапорного» попадает 15-20% запасов природного газа, доступного к добыче.

По мере истощения крупных месторождений важность задачи эффективного использования ННГ значительно возрастает. По экспертным данным, объем ННГ на выработанных газовых месторождениях только в Западной Сибири исчисляется триллионами кубометров. По разрабатываемым месторождениям Ямало-Ненецкого АО объемы ННГ превышают 2 трлн м 3 , а в целом по автономному округу – составляют более 5 трлн м 3 .

Аналогичная ситуация возникает с попутным нефтяным газом, когда при дегазации и сепарировании нефти в эту категорию попадают значительные объемы ПНГ — ценного углеводородного сырья. К примеру, если в 2007 году на Вынгапуровском месторождении остаток низконапорного попутного газа (НН ПНГ) оценивался в объеме 90 млрд м 3 , то на Медвежьем (на фото ниже) к 2020 году прогнозируется 310 млрд м 3 . Проблема станет повсеместной уже к 2025 году.

Ситуацию обостряет увеличение доли так называемого «жирного» газа в общем объеме добычи. За метановым «сухим» газом пока сохраняется преимущество, так как для его использования не требуются специальные системы по выделению этан-, пропан-, бутановых и более тяжелых фракций. По этой причине вопрос дальнейшего использования тяжелых компонентов ПНГ остро не стоит. Но уже к 2030 году около половины добываемого газа будет «жирным». Переориентация на добычу «жирного» газа выдвигает новый приоритет – переоснащение промыслов для подготовки к транспортировке и переработке газового конденсата — важного сырья для газохимии.

Но эта проблема требует отдельного рассмотрения. Мы же вернемся к теме НН ПНГ.

Процесс разгазирования нефти может начинаться уже в насосно-компрессорных трубах нефтяных скважин. При движении продукции из скважин по нефтегазопроводам также происходит выделение ПНГ. В итоге, поток пластовой нефти переходит из однофазного состояния в двухфазное – разгазированная нефть и попутный нефтяной газ. Это происходит по причине падения давления и изменения температуры пластовой жидкости.

Однако совместное хранение или транспортировка нефти и ПНГ экономически нецелесообразны. Объём выделяемого газа в несколько раз превышает объём жидкости. Совместная обработка нефти и ПНГ потребовала бы использования емкостного оборудования и трубопроводов значительно больших размеров. Поэтому на объектах добычи и подготовки нефтегазовый поток разделяют на два – нефтяной и газовый. Разделение потока происходит в специальных аппаратах – сепараторах, где создаются условия для максимально эффективного выделения ПНГ из нефти.

Выделяемый газ нуждается в подготовке на специальном технологическом оборудовании. Подготовка ПНГ – это комплекс мероприятий: осушка, удаление механических примесей, сероочистка, отбензинивание (извлечение жидких углеводородов С3+выше), удаление негорючих компонентов газа (азот, двуокись углерода), охлаждение, компримирование.

Предварительно подготовленный ПНГ обычно распределяется следующим образом. Часть идёт на нужды промысла – подается на подогреватели нефти, применяется в качестве топлива для газопоршневых или газотурбинных электростанций (на фото ниже), котельных. Часть транспортируется потребителям, к примеру, на газоперерабатывающий завод для получения продуктов газохимии (если ГПЗ находится в районе добычи нефти). Используется ПНГ и для обратной закачки в пласт для повышения нефтеотдачи (система «газлифт»).

Еще вчера эта схема сводилась к использованию ПНГ 1-й ступени сепарации. ПНГ 2-й и последующих ступеней, как правило, сжигался на факелах, так как газ с последних ступеней более сложен в подготовке.

Такой ПНГ по плотности и содержанию компонентов С3+выше значительно «тяжелее» газа 1-й ступени. Например, плотность газа 2-й ступени может превышать 1700 г/м 3 , а содержание С3+выше – 1000 г/м 3 . Соответственно, количество выпадающего конденсата в газопроводах ПНГ 2-й и последующих ступеней гораздо больше, чем те же показатели в газопроводах ПНГ 1-й ступени сепарации. Газ концевых ступеней отличается высоким содержанием механических примесей и капельной влаги. И, ко всему прочему, его надо компримировать.

Таким образом, рациональное использование ПНГ последних ступеней сепарации требует дополнительной инфраструктуры для сбора и подготовки, что повышает себестоимость газа и снижает рентабельность. Поэтому ряд компаний не шли на эти затраты и вынужденно самоустранялись от утилизации НН ПНГ.

Ситуация изменилась после января 2009 года, когда правительство ввело жесткий норматив, согласно которому утилизации должно подвергаться 95% всего ПНГ. Вопрос о том, сжигать или не сжигать попутный газ на факелах, решен в России окончательно и бесповоротно. Сжигать ПНГ стало накладно. И срабатывают не только экономические санкции (таблица 1). Ценится и экологическая репутация нефтяных компаний.

Таблица 1. Повышающие коэффициенты к плате за сверхнормативное сжигание ПНГ

При снижении добычи нефти результативное использование ПНГ приобретает особый вес. Учитывая, что НН ПНГ занимает значительную долю в потерях попутного газа, нефтегазодобывающие компании внедряют современные технологии его утилизации. Многие уже убедились в верности своего стратегического выбора.

ЭФФЕКТИВНОСТЬ ОБЕСПЕЧИТ ЭНЕРГАЗ

Итак, ПНГ со 2-й и последующих ступеней сепарации нефти является низконапорным. Его собственное давление не превышает 0,4-0,5 МПа (изб.) и не позволяет транспортировать ПНГ между объектами нефтегазодобывающего комплекса или подавать его в трубопровод до головной компрессорной станции, направляющей газ стороннему потребителю.

В этой ситуации технологическая задача компримирования НН ПНГ решается комплексно. Месторождения оснащаются так называемыми «малыми» компрессорными станциями (КС) или компрессорными станциями низких ступеней сепарации (СКНС), основу которых составляют компрессорные установки (КУ) низкого давления. Когда же давление газа близко к вакууму (от -0,05 до 0,01 МПа изб.), на КС и СКНС применяются вакуумные компрессорные установки.

Надежная работа КУ обеспечивается специальными инженерными решениями с учетом состава и качества газа, условий эксплуатации и индивидуальных проектных требований. Начиная с 2007 года, такой опыт накоплен в Группе ЭНЕРГАЗ, специализирующейся на технологических проектах комплексной газоподготовки. Инженеры ЭНЕРГАЗа тщательно учитывают все особенности компримирования НН ПНГ, используя, как правило, установки на базе винтовых маслозаполненных компрессоров.

Назовем основные факторы, осложняющие процесс компримирования низконапорного ПНГ, и рассмотрим решения этих проблем.

Читать еще:  Что это двигатель мтс

Необходимость доочистки. Несмотря на то, что в компрессорную установку поступает уже подготовленный газ, содержание в нем механических примесей и капельной влаги не соответствует условиям нормальной эксплуатации высокоэффективных агрегатов и не позволяет достигнуть на выходе установленных проектных параметров по чистоте. Поэтому возможности основных элементов системы фильтрации КУ (газомасляного сепаратора и коалесцентных фильтров) расширяются за счет дополнительной комплектации:

  • на входе газа устанавливается двухступенчатый фильтр-скруббер, оснащенный системой автоматического дренажа конденсата;
  • на выходе из КУ ставят дополнительные фильтры тонкой очистки газа. Они, как и скруббер, встраиваются в существующий блок-модуль, что обеспечивает компактное размещение оборудования;
  • в технологическую схему установки может включаться узел осушки газа;
  • в особых случаях вместе с КУ могут также поставляться компактные адсорбционные, абсорбционные или рефрижераторные осушители газа в отдельном укрытии.

Риск образования конденсата. Работа компрессорных установок на тяжелом (жирном) газе в процессе компримирования всегда сопровождается риском конденсатообразования внутри системы. Возникает две проблемы: 1) растворение в масле большого количества углеводородов, ведущее к повышенному насыщению масла газоконденсатом, снижению кинематической вязкости масла и увеличению уровня масла в маслобаке; 2) образование конденсата в рабочих ячейках компрессора, которое приводит к увеличению потребления мощности на внешнее сжатие и мощности на сжатие одного килограмма газа. Задача решается следующим способом:

  • проводится детальный анализ компонентного состава газа и расчеты в специализированном программном обеспечении, создающем теоретическую модель поведения газа при определенных условиях (температуре и давлении). Это дает возможность определить оптимальные параметры рабочих температур масла и газа, которые позволяют вести рабочие процессы в газовом контуре КУ вне зоны кондесатообразования;
  • в маслосистеме КУ используется специальное более вязкое масло, имеющее повышенную устойчивость к насыщению тяжелыми углеводородами.

Негативное влияние крайне низкого давления, близкого к вакууму. Компримирование газа с давлением, близким к вакууму (от -0,05 МПа изб.), влечёт следующие проблемы: 1) возникает большая разница в давлении на входе и на выходе КУ, вследствие чего давление газа, имеющееся в установке, сбрасывается не только через сбросовую свечу, но и через входной трубопровод. При этом происходит «унос» масла из маслосистемы во входной фильтр-скруббер; 2) под действием вакуума в компрессорную установку может поступать воздух, что увеличивает взрывоопасность технологического процесса. Применяемые решения:

  • оснащение системы входных клапанов КУ модернизированными быстродействующими клапанами с электромеханическими приводами и пружинными отсекателями, что позволяет отсекать входной трубопровод от основной магистрали;
  • комплектация КУ системой обнаружения кислорода с датчиком, определяющим его содержание в компримируемом газе.

Изменение характеристик исходного газа. По своему составу ПНГ нестабилен. А по условиям некоторых проектов компрессорные установки вообще компримируют смешанный попутный газ, поступающий с разных объектов добывающего комплекса. Соответственно, основные его параметры (состав, плотность, давление, температура точки росы, теплотворная способность) могут меняться. Также изменяются параметры исходного газа, поступающего с одного объекта, – в силу климатических изменений, истощения запасов углеводородов, обводненности скважин и т.д. Чтобы контролировать этот процесс (и затем, при необходимости, варьировать эксплуатационные характеристики КУ), компрессорные установки могут оснащаться следующим дополнительным оборудованием:

  • потоковый хроматограф с устройством отбора проб для определения состава и теплотворной способности газа (калориметр);
  • потоковый измеритель температуры точки росы газа по воде и углеводородам (с устройством отбора проб);
  • замерное устройство расхода компримируемого газа.

Тяжелые условия эксплуатации. Нередко компримирование низконапорного ПНГ проходит в тяжелых условиях: 1) климатические условия, когда минимальная температура воздуха достигает минус 60ºС, а средняя температура наиболее холодной пятидневки – минус 50°С; 2) особенности состава газа – например, высокое содержание сероводорода; 3) удаленность (труднодоступность) объектов, что осложняет техническое обслуживание и контроль за ходом эксплуатации оборудования. Поэтому на практике применяются следующие решения:

  • выбор варианта исполнения КУ: внутрицеховое (на фото ниже), контейнерное, арктическое;
  • модернизация маслосистемы и применение масел нового поколения;
  • использование специальных сплавов и антикоррозийных материалов при производстве компрессорных установок;
  • оснащение КУ устройством плавного пуска двигателя;
  • резервирование некоторых элементов и узлов оборудования (например, сдвоенные фильтры маслосистемы или насосы систем смазки и охлаждения), особенно, когда компрессорные станции эксплуатируются без резервной установки.

Начиная с 2007 года, ЭНЕРГАЗ поставил и ввел в эксплуатацию 275 технологических установок подготовки и компримирования газа. В электроэнергетике они работают на 171 энергоблоке суммарной мощностью 6 290 МВт, в нефтегазовой отрасли – подготавливают попутный нефтяной и природный газ на 43 месторождениях.

Компрессорные установки «ЭНЕРГАЗ» функционируют на следующих объектах добывающего комплекса: энергоцентры собственных нужд (ЭСН) на базе ГТЭС и ГТУ-ТЭЦ; цеха подготовки и перекачки нефти (ЦППН); цеха контрольной проверки нефти (ЦКПН); дожимные насосные станции (ДНС); установки подготовки нефти (УПН); центральные пункты сбора нефти (ЦПС); концевые сепарационные установки (КСУ); центральные перекачивающие станции; транспортные системы жидких углеводородов (ТСЖУ), установки предварительного сброса воды (УПСВ); установки деэтанизации конденсата (УДК); установки комплексной подготовки газа (УКПГ).

В Группе ЭНЕРГАЗ постоянно наращивается уникальный опыт реализации проектов по компримированию низконапорного ПНГ. Их география – от Республики Беларусь до Крайнего Севера и Республики Саха (Якутия).

На сегодня в таких специализированных проектах задействовано 117 компрессорных установок (таблица 2), еще 11 КУ готовятся к вводу в работу.

Производственная практика убеждает нас: для рационального применения ПНГ в максимально возможных объемах требуются не только целенаправленные усилия государства, общества и бизнеса, но и слаженная работа профессионального сообщества – нефтяников, проектировщиков, производителей оборудования.

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ТОПЛИВОПОДАЧИ В ГАЗОДИЗЕЛЬНЫХ МАЛООБОРОТНЫХ ДВУХТАКТНЫХ ДВИГАТЕЛЯХ НИЗКОГО ДАВЛЕНИЯ

Авторы

  • Е. В. Белоусов Херсонская государственная морская академия
  • Р. А. Варбанец Одесский национальный морской университет
  • В. П. Савчук Херсонская государственная морская академия
  • И. В. Грицук Херсонская государственная морская академия
  • В. С. Вербовский Институт газа НАН Украины

Ключевые слова:

Аннотация

Рост цен на жидкие нефтяные топлива, наблюдаемый на протяжении последних десятилетий, а также ужесточение экологических норм по содержанию в отработавших газах судовых двигателей токсичных веществ и парниковых газов, сделали использование природного и нефтяного газов привлекательной альтернативой традиционным моторным топливам. И это не смотря на дополнительные технические трудности, связанные с их использованием. Учитывая, что на торговом флоте более 70% главных двигателей, это малооборотные двухтактные двигатели, решение задач связанных с переводом их на газовое топливо, особенно актуально в настоящее время. Проблема перевода усугубляется тем, что в силу особенностей организации рабочего процесса, в двухтактных двигателях данного класса возможно только внутреннее смесеобразование, осуществляемое на такте сжатия. Последнее обстоятельство потребовало разработки принципиально отличных подходов к решению проблемы по сравнению с теми, которые традиционно используются на четырехтактных высоко- и среднеоборотных двигателях. Определенным ограничением, усложняющим решение проблемы организации рабочего процесса на газовых топливах, является необходимость сохранения двигателем возможности работать на традиционных жидких топливах во всем диапазоне нагрузочно-скоростных режимов. В настоящее время лидирующие позиции в области создания двухтопливных малооборотных двигателей разделяют между собой фирмы MAN и WinGD, первая из которых разработала линейку двигателей с подачей газового топлива в рабочее пространство двигателя под высоким давлением в конце такта сжатия, а вторая под низким давлением в начале такта сжатия. Каждому из этих методов свойственны как определенные преимущества, так и существенные недостатки. Подача топлива под низким давлением значительно упрощает конструкцию топливной системы двигателя и снижает требования к обеспечению ее безопасности во время эксплуатации, однако такие двигатели склонны к возникновению детонационного сгорания, что значительно сужает возможности их использования, особенно на режимах, близких к номинальным. Поиску и обоснованию технических решений, позволяющих минимизировать этот недостаток с сохранением присущих методу преимуществ, посвящена данная статья.

Библиографические ссылки

Rolsted H. MAN B&W 2-stroke Marine Engine Leading today’s Environmental challenges / H. Rolsted.: Korea: MAN Diesel & Turbo SE, 2010. — 86 с.

Читать еще:  Что означает перебрать двигатель

ME-GI – Dual Fuel Done Right. MAN Diesel, ME-GI: SNAME NY, 2013. — 73 с.

ME-GI Dual Fuel MAN B&W Engines A Technical, Operational and Cost-effective Solution for Ships Fuelled by Gas, 2012. – Denmark: Copenhagen: MAN Diesel & Turbo. – 36 с.

Wettstein R. The Wärtsilä low-speed, low-pressure dual-fuel engine, AJOUR Conference, 2014. — Odense, 27/28 Nov, 31 с.

CIMAC NMA Wärtsilä 2-stroke dual fuel technology, 2014.: Norse annual meeting, 32 с.

Ott M. X-DF low-pressure dual-fuel engine technology / M. Ott. WinGD low-speed engines Licensees, Conference, Ott M. 2015. – 7 с.

Nylund I. Low pressure at low speed. Marine In Detail / I. Nylund. Dual-Fuel Technology, Wärtsilä, 2014 – 6 с.

Белоусов Е.В. Анализ современных подходов к проблеме создания судовых малооборотных газодизельных двигателей / Е.В. Белоусов , В.П. Савчук , Т.П. Белоусова // Двигатели внутреннего сгорания. — 2016 – № 1. – С. 81-88.

Клапан отсечной низкого давления (Актуатор газовый) двигатель Yuchai (YC6MK340N-50) J4R00-1113301

Код товара: 55825

В наличии: много

Выставить счет на оплату

Бесплатная консультация специалиста

Доставка по Москве

Экспресс-доставка курьером по Москве от 1 дня.

В пределах МКАД – 500 руб.

За МКАД (до 25км) – 1000 руб.

БЕСПЛАТНО

Мы находимся по адресу:
Москва, 1-й Митинский пер., д. 15, стр. 3

Доставка по России

Бесплатная доставка до любой транспортной компании

В CTG-PARTS Вы приобретаете качественный товар от лучших производителей.

  1. Покупатель имеет право на обмен или возврат товара в течение четырнадцати дней с момента отгрузки товара Покупателю. В соответствии с Законом РФ «О защите прав потребителей», обмен или возврат проводится, если товар не был в употреблении, сохранены его товарный вид, потребительские свойства, пломбы, фабричные ярлыки, упаковка а также имеется товарный чек или кассовый чек либо иной подтверждающий оплату документ.
  2. Гарантия на запчасти не распространяется в случае их самостоятельной установки (вне дилерских сервисных станций).
  3. При установке в специализированном, сертифицированном центре при возникновении проблем с запасной частью гарантия и возврат осуществляются в течении 14 дней с момента отгрузки при наличии документов, подтверждающих покупку и при наличии письменного заключения специализированного сервиса о неисправности запчасти.
  4. Запасные части, бывшие в употреблении, либо установленные или имеющие следы установки на автомобиль к возврату не принимаются и не обмениваются без письменного заключения специализированного сервиса о неисправности запчасти, а также возникновению неисправности до передачи товара потребителю.
  5. Возврат денежных средств осуществляется через ту же платежную систему, откуда была произведена оплата.

В интернет-магазине CTG-PARTS всегда самые выгодные цены.

Нашли дешевле? Свяжитесь с нашими менеджерами, мы постараемся предложить Вам лучшую цену!

Купить по цене конкурента

Более 10 000 наименований запчастей в наличии на Московском складе.

Персональный менеджер каждому клиенту!

  • Бесплатная консультация.
  • Помощь в подборе запчастей.
  • Учтём все Ваши пожелания по оплате и доставке заказа.
  • Ответим на все интересующие вопросы.
  • Описание
  • Отзывы

Отзывы (0)

Комментариев к этому товару ещё нет. Станьте первым, кто оставил отзыв!

Газодизельный KAMAZ-5490 NEO (КПГ)

В 2017 году ПАО «КАМАЗ» вывело на рынок газодизельную версию седельного тягача KAMAZ-5490 NEO, которая за счет замещения части дизельного топлива газом позволяет владельцам автопарков экономить на топливе до 500 000 рублей в год при пробеге машины 185 000 км.

Автомобиль сконструирован на базе самого популярного в России в 2018 году седельного тягача с колесной формулой 4х2 KAMAZ-5490 NEO и отличается от него тем, что вместо правого топливного бака установлена кассета из 4 газовых баллонов по 80 литров общей вместимостью 64 куб.м. газа, а слева установлен топливный бак на 400 литров.

Двигатель Mercedes-Benz переоборудован и может работать как в дизельном, так и в газодизельном режимах. В газодизельном режиме двигатель одновременно потребляет и дизельное топливо, которое выступает в качестве запальной доли, и газ, который способствует лучшему сгоранию смеси, при этом сохраняются все мощностные характеристики двигателя. Запас хода автомобиля KAMAZ-5490 NEO в газодизельном режиме составляет 450 км. Если в баллонах заканчивается газ, автомобиль автоматически переходит в дизельный режим и может проехать еще 950 км до следующей заправки.

Обслуживание газового оборудования производится одновременно с обслуживанием самого автомобиля и заключается в замене фильтров высокого и низкого давления, проверке и осмотре газовых магистралей, электрических компонентов и креплений.

Именно сейчас с ростом цен на топливо газодизельные автомобили KAMAZ-5490 NEO становятся все более востребованными. В 2018 году продажи газодизельной версии выросли в 7,5 раз по сравнению с 2017 годом, с 270 до 2010 единиц. А развитая инфраструктура газозаправочных станций компримированного природного газа (КПГ) позволяет транспортным компаниям выстроить логистику грузоперевозок с применением газодизельного седельного тягача KAMAZ-5490 NEO с наибольшим экономическим эффектом.

Основными преимуществами применения двутопливной (дизель-газ) системы питания двигателя являются:

Повышение экономической эффективности использования автомобиля- замещения дизельного топлива газом в соотношении 60/40 дает общую экономия в деньгах до 21%, или до 500 000 руб в год при пробеге машины 185 000 км.

Уменьшение загрязнения окружающей среды – при сгорании газа нет твёрдых частиц, это особенно эффективно при применении именно на дизельных двигателях

Повышение ресурса двигателя – меньше отложений продуктов сгорания на поршневой группе

Сохранение всех мощностных характеристик двигателя.

Метан в моторе

Появление новых, более совершенных газовых топливных систем

и ощутимое ухудшение экологической ситуации в городах, где быстро растет автомобильный парк, заставляют многих водителей задуматься:

не стоит ли перевести свой автомобиль на газ? Свое мнение

высказывают инженеры Владимир ЗОЛОТНИЦКИЙ и Вячеслав МАМЕДОВ.

Для большинства определяющим фактором является разница в цене бензина и газа. Так, литр АИ-93 в разных районах страны стоит от 1800 до 2300 рублей, а газа — около 1000 рублей. Газ в два раза дешевле бензина. Нетрудно подсчитать окупаемость газовой установки на пропан-бутане (сжиженном нефтяном газе), взяв для примера автомобиль «Волга», затраты на переоборудование которого составляют 1,2–1,3 млн. рублей. При расходе топлива в городском цикле 13 л/100 км экономический эффект достигает 10 тыс. рублей с каждой сотни километров. Таким образом, переход на газ окупается через 12–15 тыс. км — и это без учета снижения затрат на масло и увеличения межремонтного пробега двигателя.

Дело в том, что отсутствие у газа растворяющих и смывающих свойств способствует увеличению срока службы моторного масла в 1,5–2 раза и снижению его расхода на 10–15%. Одновременно межремонтный пробег двигателя увеличивается в 1,5–2 раза. Улучшается и работа системы зажигания, срок службы свечей возрастает на 40%. Существенно снижается токсичность по окиси углерода (СО) — в 2–3 раза, окиси азота (NO) — в 1,2 раза, по углеводородам (СН) — в 1,3–1,9 раза. В топливной системе и камере сгорания не накапливаются смолистые отложения. Газ — это высококачественное топливо с октановым числом около 105. Поэтому детонационные стуки в двигателе устраняются полностью. Если автомобиль оборудован катализатором, его сохранность при работе на газе гарантируется. Снижается уровень шума на 2–3 дБ, а сам двигатель начинает работать мягче.

При этом следует учесть, что при переходе с бензина на газ на одних и тех же режимах работы мощность двигателя снижается. Причина этого — меньшее на 6–8% выделение газом теплоты на единицу объема горючей смеси, хотя единица массы газа выделяет больше тепла (газ пропан — 10972 ккал/кг; газ бутан — 10845 ккал/кг, бензин — 10500 ккал/кг), а также снижение коэффициента наполнения цилиндров.

Читать еще:  Что такое система sohc двигатель

Для двигателей используют два вида газового топлива: сжиженный нефтяной газ (пропан-бутан) и сжатый природный газ (метан).

Наибольший пробег без дозаправки обеспечивает система на сжиженном газе — при одинаковом объеме баллонов примерно в 3 раза больше, чем на сжатом метане. И все-таки, благодаря последним разработкам наших специалистов можно предположить, что будущее — за установками, работающими на метане. В России — огромные запасы этого газа (40% мировых). Он существенно дешевле сжиженного пропан-бутана, получаемого из нефти. Кроме того, метан легче воздуха в 1,6 раза и в случае утечки моментально улетучивается. (Пропан-бутан тяжелее воздуха в 1,5–2 раза и при утечках может скапливаться в помещениях, образуя с воздухом взрывоопасную смесь.) Метан менее взрывоопасен: чтобы случился взрыв, его должно накопиться в 2,5 раза больше, чем пропана. Обращение с газом не опаснее, чем с бензином, но требует соблюдения иных правил.

Научно-производственная фирма «САГА» (Москва) и АО «ИНКАР» (Пермь) разработали и уже наладили выпуск автомобильной газовой топливной системы (АГТС) «САГА-7» для сжатого природного газа (СПГ) — метана. Она устанавливается как дополнительное оборудование на любые модели легковых, малотоннажных грузовых автомобилей и микроавтобусов отечественного и иностранного производства с рабочим объемом двигателя до 4 литров. Система выгодно отличается от подобных конструкторско-технологическими решениями и качеством изготовления (на авиационном заводе).

В зависимости от марки автомобиля, размеров и массы баллонов их можно установить один, два или три. На рисунке — схема установки, работающей на СПГ, с тремя баллонами высокого давления. Металлический корпус баллона покрыт армирующим слоем из стеклопластика, что повышает прочность и уменьшает массу. На внутренней поверхности — покрытие для защиты от коррозии. Запас газа в трех баллонах рассчитан примерно на 250 км.

Каждый баллон снабжен отдельным вентилем 28, который содержит скоростной клапан и разрывную (предохранительную) мембрану, по температуре страхующую баллон от разрушения при пожаре.

Все баллоны заполняют одновременно через заправочное устройство 31. В корпусе заправочного устройства размещены фильтр, заправочный вентиль и устройство блокировки 32 пуска двигателя, если шланг автомобильной газонаполнительной компрессорной станции (АГНКС) не отсоединен от заправочного устройства системы.

Баллоны соединены трубопроводами высокого давления, переходящими в газовую магистраль 26. Трубопроводы из нержавеющей стали, с заводской развальцовкой. Гайки и ниппели «авиационного» типа, выдерживают многократный демонтаж.

На автомобиле монтируют двухступенчатый редуктор-подогреватель низкого давления (РНД) 18 из комплекта «САГА-6» — такой же, как для сжиженного нефтяного газа (пропан-бутана). Для работы на сжатом газе в него ввернут дополнительный узел — редуктор высокого давления (РВД) 16, обладающий хорошей надежностью и малыми размерами. Он понижает давление с 20 до 0,4–0,6 МПа (с 200 до 4–6 кгс/см2). Обогревается РВД путем теплопередачи от РНД. Газовый смеситель 11 устанавливается внутри корпуса воздушного фильтра над карбюратором, предназначенным для подачи газа в двигатель и создания газовоздушной смеси.

Бензиновая система питания при установке АГТС содержит традиционные элементы: карбюратор 10, бензиновый электромагнитный клапан 9, фильтр тонкой очистки 8, бензонасос 7, бензопровод 6 и бензобак 5.

Газовая система питания включает в себя электромагнитный газовый клапан 22 на давление 20 МПа (200 кгс/см2) с фильтром и датчиком давления (количества газа) 23 в баллонах, который выдает сигнал на указатель количества бензина 1 приборного щитка автомобиля 2.

Штатный указатель 1 уровня бензина при работе на этом топливе показывает его количество в бензобаке, а при работе на газе — количество (давление) газа в баллонах.

В заправочном устройстве 31, вентиле баллона 28, газовом электромагнитном клапане 22, редукторе высокого давления 16 имеются каналы, по которым газ в случае утечки (через основные уплотнения) выводится по дренажным шлангам 30, 24 и 13 за пределы автомобиля. В дренажные шланги вмонтированы датчики утечки газа 29, 25 и 14.

Принципиальное отличие газобаллонной установки АГТС «САГА-7» от других в том, что утечка газа контролируется в дренажных шлангах (а не в салоне автомобиля или в гараже), при этом в кабине водителя срабатывает сигнализация, мигают светодиоды красного свечения, соответствующие датчикам в контролируемом дренажном шланге, где присутствует метан, прерывисто работает звуковая сигнализация. Герметичность аппаратуры после срабатывания сигнализации можно проверить переносным течеискателем газа или «старым испытанным методом» — мыльный раствор наносят на выход дренажного шланга, где датчик зафиксировал наличие метана, и по появлению мыльных пузырей судят о степени разгерметизации агрегата системы.

Электронное устройство 3 (обработки сигналов, поступающих от датчиков) обеспечивает: звуковую и световую сигнализацию об утечке и ее месте — в багажном отделении (заправочном устройстве, вентиле), редукторе высокого давления или в электромагнитном газовом клапане; изменение угла опережения зажигания при переходе с одного вида топлива на другой; сопряжение датчика давления газа в баллонах с указателем уровня бензина приборного щитка автомобиля; выключение электромагнитного газового клапана при остановке двигателя; блокировку пуска, если заправочный шланг АГНКС не отключен от заправочного устройства системы; переключение видов топлива. Автоматический встроенный контроль электронного устройства сигнализирует о его исправности.

При работе газобаллонной установки сжатый природный газ из баллонов 27 высокого давления через вентили 28 по магистральному трубопроводу 26 поступает в ЭМК 22 с фильтром. Здесь газ очищается от механических примесей и поступает в прогретый теплоносителем РВД 16, где давление газа понижается до величины, необходимой для работы РНД. Далее вся работа газобаллонной установки идет по той же схеме, что и для сжиженного газа.

Переход на питание двигателей метаном, особенно в крупных городах, поможет существенно улучшить атмосферу, сбережет деньги пользователей, а главное, сохранит здоровье тысячам россиян. Если заправка сжатым газом есть недалеко от маршрута ваших поездок, имеет смысл использовать его преимущества.

Хорошим примером этого служит Аргентина. В 1990 году парк автомобилей, работающих на газе, составлял лишь сотни единиц — сейчас 400 000 таких машин и 504 заправочных станции. Ежемесячный прирост близок к 4 000 машин. Стимулом к переводу автомобилей на газ служит разница в стоимости традиционного и газового топлива, что продиктовано заботой об окружающей среде, подкрепленной законом.

«Газель» с установкой АГТС «САГА-7».

Схема газовой топливной системы «САГА-7»: 1 — указатель количества бензина в баке и давления (количества) газа в баллонах; 2 — щиток приборов; 3 — электронное устройство;

4 — трехпозиционный переключатель вида топлива «бензин — нейтральное положение — газ»; 5 — бензобак;

6 — бензопровод; 7 — бензонасос;

8 — топливный фильтр тонкой очистки; 9 — бензиновый электромагнитный клапан; 10 — карбюратор; 11 — газовый смеситель; 12 — газопровод низкого давления; 13 — дренажный шланг редуктора высокого давления; 14 — датчик утечки газа; 15 — вакуумный шланг;

16 — редуктор высокого давления;

17 — трубопровод высокого давления; 18 — двухступенчатый редуктор-подогреватель низкого давления; 19 — катушка зажигания; 20 — распределитель зажигания; 21 — двигатель;

22 — газовый электромагнитный клапан; 23 — датчик давления газа; 24 — дренажный шланг газового электромагнитного клапана; 25 — датчик утечки газа; 26 — трубопровод высокого давления; 27 — баллон; 28 — вентиль баллона; 29 — датчик утечки газа;

30 — дренажный шланг; 31 — заправочное устройство; 32 — датчик блокировки пуска двигателя.

Размещение элементов АГТС в моторном отсеке.

Двухступенчатый редуктор низкого давления с редуктором высокого давления (на переднем плане — дренажный шланг).

Ссылка на основную публикацию
Adblock
detector