Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Магнитный двигатель Минато: существует ли «рог изобилия» магнитной энергии

Магнитный двигатель Минато: существует ли «рог изобилия» магнитной энергии?

На примере двигателя Минато и аналогичных конструкций рассмотрена возможность использования энергии магнитного поля и трудности, связанные с ее практическим применением.

В своей повседневной жизни полевую форму существования материи мы редко замечаем. Разве что, когда падаем. Тогда гравитационное поле становится для нас болезненной реальностью. Но есть одно исключение – поле постоянных магнитов. Практически каждый в детстве играл с ними, с пыхтением пытаясь разорвать два магнита. Или, с таким же азартом, сдвинуть упрямо сопротивляющиеся одноименные полюса.

С возрастом интерес к этому занятию пропадал, или, наоборот, становился предметом серьезных исследований. Идея практического использования магнитного поля появилась задолго до теорий современной физики. И главным в этой идее было стремление использовать «вечную» намагниченность материалов для получения полезной работы или «дармовой» электрической энергии.

Изобретательные попытки практического использования постоянного магнитного поля в двигателях или электрических генераторах не прекращаются и в наши дни. Появление современных редкоземельных магнитов с высокой коэрцитивной силой подогрел интерес к подобным разработкам.

Обилие остроумных конструкций разной степени работоспособности заполонили информационное пространство сети. Среди них выделяется движитель японского изобретателя Кохеи Минато.

Сам Минато по специальности музыкант, но много лет занимается разработкой магнитного двигателя собственной конструкции, изобретенного, по его словам, во время концерта фортепьянной музыки. Трудно сказать, каким музыкантом был Минато, но бизнесменом он оказался хорошим: свой двигатель запатентовал в 46 странах и продолжает этот процесс сегодня.

Необходимо отметить, что современные изобретатели ведут себя довольно непоследовательно. Мечтая осчастливить человечество своими изобретениями и остаться в истории, они с не меньшим старанием стараются скрыть детали своих разработок, надеясь в будущем получить дивиденды с продажи своих идей. Но стоит вспомнить Николу Тесла, когда тот, для продвижения своих трехфазных двигателей, отказался от патентных отчислений фирмы, осваивавшей их выпуск.

Вернемся к магнитному двигателю Минато. Среди множества других, аналогичных конструкций, его изделие выделяется очень высокой экономичностью. Не вдаваясь в детали конструкции магнитного двигателя, которые все равно скрыты в патентных описаниях, необходимо отметить несколько его особенностей.

В его магнитном двигателе наборы постоянных магнитов расположены на роторе под определенными углами к оси вращения. Прохождение «мертвой» точки магнитами, которая, по терминологии Минато, называется точкой «коллапса», обеспечивается за счет подачи короткого мощного импульса на электромагнитную катушку статора.

Именно эта особенность и обеспечили конструкции Минато высокую экономичность и бесшумность работы при высоких оборотах вращения. Но утверждение, что КПД двигателя превышает единицу, не имеет под собой никакого основания.

Для анализа магнитного двигателя Минато и похожих конструкций, рассмотрим понятие «скрытой» энергии. Скрытая энергия присуща всем видам топлива: для угля она составляет 33 Дж/грамм; для нефти – 44 Дж/грамм. А вот энергия ядерного топлива оценивается в 43 миллиарда этих единиц. По разным, противоречивым оценкам, скрытая энергия поля постоянного магнита составляет около 30% потенциала ядерного топлива, т.е. это один из самых энергоемких источников энергии.

А вот воспользоваться этой энергией далеко не просто. Если нефть и газ при воспламенении отдает сразу весь свой энергетический потенциал, то с магнитным полем все не так просто. Запасенная в постоянном магните энергия может совершать полезную работу, но конструкция движителей при этом очень сложна. Аналогом магнита может служить аккумулятор очень большой емкости с не менее большим внутренним сопротивлением.

Поэтому сразу возникают несколько проблем: получить большую мощность на валу двигателя при малых его габаритах и массе затруднительно. Магнитный двигатель со временем, по мере расходования запасенной энергии, будет терять свою мощность. Даже предположение о том, что энергия восполняется магнитным полем Земли, не может устранить этот недостаток.

Главным же недостатком является требование прецизионной сборки конструкции двигателей, которое препятствует его массовому освоению. Минато до настоящего времени работает над определением оптимального расположения постоянных магнитов.

Поэтому его обиды на японские корпорации, которые не хотят осваивать изобретение, необоснованны. Любой инженер, при выборе двигателя, в первую очередь поинтересуется его нагрузочными характеристиками, деградацией мощности в течении срока эксплуатации и еще рядом характеристик. Подобной информации по двигателям Минато, как, впрочем, и остальным конструкциям, до настоящего времени нет.

Редкие примеры практического воплощения магнитных двигателей вызывают больше вопросов, чем восхищение. Недавно фирма SEG из Швейцарии объявила о готовности выпускать под заказ компактные генераторы, приводом в которых служит разновидность магнитного двигателя Серла.

Генератор вырабатывает мощность около 15 кВт, имеет размеры 46х61х12см и ресурс работы до 60 МВт-часов. Это соответствует среднему сроку эксплуатации 4000 часов. Но каковы будут характеристики в конце этого периода?

Фирма честно предупреждает, что после этого необходимо повторное намагничивание постоянных магнитов. Что стоит за этой процедурой – неясно, но скорей всего, это полная разборка и замена магнитов в магнитном двигателе. А цена такого генератора составляет более 8500 евро.

Фирма Минато тоже объявила о заключении контракта на изготовление 40000 вентиляторов с магнитными двигателями. Но все эти примеры практического применения единичны. Причем, никто не утверждает при этом, что их устройства имеют КПД больше единицы, и они будут работать «вечно».

Если традиционный асинхронный двигатель выполнить из современных дорогих материалов, например, обмотки из серебра, а магнитопровод из тонкой стальной аморфной ленты (стеклометалл), то при сравнимой с магнитным двигателем цене получим близкий КПД. При этом, асинхронные двигатели будут иметь значительно больший срок службы при простоте изготовления.

Подводя итоги, можно утверждать, что пока удачных конструкций магнитных двигателей, пригодных для массового промышленного освоения, не создано. Те образцы, которые работоспособны, требуют инженерной доводки, дорогих материалов, прецизионной, индивидуальной настройки и не могут конкурировать с уже освоенными типами двигателей. И уж совсем безосновательны утверждения, что эти двигатели могут работать неограниченное время без подвода энергии.

Шаговый двигатель

  • Типы шаговых двигателей
    • Реактивный шаговый двигатель
    • Шаговый двигатель с постоянными магнитами
    • Гибридный шаговый двигатель

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Конструкция шагового электродвигателя

Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель — имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.

Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.

Характеристики

Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель — маломощный двигатель по сравнению с другими электродвигателями.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

Читать еще:  Что такое смазочная система двигателя

Типы шаговых двигателей

    По конструкции ротора выделяют три типа шаговых двигателей:
  • реактивный;
  • с постоянными магнитами;
  • гибридный.

Реактивный шаговый двигатель

Реактивный шаговый двигатель — синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

,

  • где NR — количество полюсов ротора;
  • NS – количество полюсов статора.

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:
  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Шаговый двигатель с постоянными магнитами

Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.

По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.

Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.

    Таким образом по виду обмоток выделяют два типа шаговых двигателей:
  • униполярный (однополярный),
  • биполярный (двухполярный).

Униполярный (однополярный) шаговый двигатель

Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.

Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.

Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.

Биполярный шаговый двигатель

Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.

Управление шаговым двигателем с постоянными магнитами

Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.

    Существует несколько способов управления:
  • волновое,
  • полношаговое,
  • полушаговое.
Волновое управление

Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.

На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.

На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.

Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.

Магнитный двигатель: миф или реальность?

Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученые своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является магнитный двигатель.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:

Принцип действия магнитного двигателя

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.

Читать еще:  D15b стук на холодном двигателе

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Николы Тесла

В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:

Магнитный двигатель Тесла

Конструктивно магнитный двигатель Тесла состоит из таких элементов:

  • электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
  • гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
  • независимых магнитов, сохраняющих униполярность полей при вращении дисков.

Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.

Минато

Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.

Схема двигателя Минато

Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной подачи электроэнергии через реле или полупроводниковый прибор.

При этом ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.

Николая Лазарева

Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:

Двигатель Лазарева

Как видите, для изготовления такого двигателя или генератора вам потребуется:

  • колба;
  • жидкость;
  • трубка;
  • прокладка из пористого материала;
  • крыльчатка и нагрузка на вал.

Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:

Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении расстояний и зазоров между основными элементами мотора.

Перендева

Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.

Магниты статора и ротора в двигателе Переднева

Как видите на рисунке, положение активных элементов имеет угол смещения, который и определяет эффективность вращения машины. Взаимодействие магнитных потоков в двигателе происходит при задании начального крутящего момента. Точность положения и угла наклона можно отстроить только в лабораторных или заводских условиях.

Василия Шкондина

Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.

Двигатель Шкондина

На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Джона Серла

От электрического мотора такой магнитный двигатель отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.

Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.

Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Видео в помощь

Магнитные двигатели. Виды и устройство. Применение и работа

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Читать еще:  Вода попала в двигатель троит

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

В Германии создали автомобильный электродвигатель без постоянных магнитов — дешевле, экономичнее и эффективнее

Немецкая компания Mahle разработала автомобильный электродвигатель без постоянных магнитов. Это позволит снизить зависимость от китайских поставок редкоземельных металлов и сделает электромоторы дешевле. Также отсутствие постоянных магнитов позволило повысить КПД электродвигателей на всех режимах работы. Для индустрии электромобилей новый двигатель обещает заметный прорыв в характеристиках машин и снижение стоимости обслуживания.

Источник изображения: Mahl

В подавляющем большинстве современных электродвигателей для электрического транспорта используются постоянные магниты преимущественно из редкоземельных металлов. Всё бы ничего, только руку на пульсе поставок этого сырья держит Китай и довольно жёстко регулирует этот рынок.

Руду с содержанием редкоземельных металлов добывают во многих частях мира, но производство по переработке в основном сосредоточено в Китае, где рабочая сила дешевле, а экологические нормы не такие строгие. Как результат, за последнее десятилетие цена на неодим выросла на 750 %, а стоимость диспрозия выросла на 2000 % и, очевидно, это не предел. Подобная ситуация заставляет разработчиков создавать электродвигатели без постоянных магнитов, заменяя их катушками индуктивности в составе ротора двигателя. Однако это тянет за собой массу проблем.

Источник изображения: Mahl

Для передачи электрического тока на катушки в роторе требуется создать надёжные и долговечные скользящие контактные передачи. Высокие токи и постоянная нагрузка делают такие узлы менее надёжными, что недопустимо для электротранспорта с высокой эксплуатационной нагрузкой. Инженеры компании Mahle смогли обойти эту проблему, предложив схему индукционной (беспроводной) передачи тока на катушки в роторе. Это практически как беспроводная зарядка смартфона.

Источник изображения: Mahl

По словам создателей, предложенная конструкция показала высочайшую эффективность, поскольку позволяет регулировать силу магнитного поля, генерируемую катушками в роторе, в соответствии с рабочей нагрузкой и режимом работы электродвигателя. Получился своего рода «умный» электродвигатель, КПД которого на высоких оборотах достигает 95 %. Также двигатель без скользящих контактов можно обслуживать гораздо реже, что экономит время и деньги на поддержание транспортной системы в порядке.

Источник изображения: Mahl

Как уверяют в Mahle, новые электродвигатели пригодны как для легковых автомобилей, так и для грузового и пассажирского транспорта. Образцы электродвигателей уже рассылаются заинтересованным автопроизводителям, а внедрение в массовое производство ожидается примерно через два с половиной года.

Ссылка на основную публикацию
Adblock
detector