Какая разница между коллекторным и бесколлекторным двигателем, их преимущества и недостатки
Какая разница между коллекторным и бесколлекторным двигателем, их преимущества и недостатки
Большое количество людей увлекаются созданием электромоделей, где одним из основных элементов выступает электродвигатель. При этом сборка и эксплуатация таких устройств часто вызывает споры относительно того, какие именно моторы лучше использовать.
Ведь на выбор предлагаются коллекторные и бесколлекторные двигатели, у каждого из которых есть свои поклонники и противники. Чтобы попытаться определить лучший вариант, нужно изучить особенности, принцип работы, их сильные и слабые стороны. Это во многом поможет принять окончательное решение.
Электромоторчики входят в состав разного автомобильного оборудования, включая стеклоомыватели, стеклоподъёмники, вентиляторы охлаждения и отопления, дворники и пр. Но также широко применяются в других сферах и отраслях.
Двигатель коллекторного типа
Под понятие коллекторных двигателей попадают различные электромашины, где переключатель тока и роторный датчик по сути являются одним устройством. С его помощью обеспечивается качественное соединение цепей в неподвижном отсеке двигателя с рабочим ротором.
Внешний вид коллекторного двигателя
Конструкция включает в себя мощные щётки и непосредственно сам коллектор. Интересно и то, что коллекторный тип мотора обладает преимуществом в виде простоты ухода и эксплуатации, легко ремонтируется и долго служит. Но есть и недостаток, проявляющийся в малом весе при большом КПД. Изначально это может показаться преимуществом. Быстроходность вместе с малым весом вынуждают использовать дополнительно хороший редуктор, иначе нормально эксплуатировать моторчик не получится.
Если же машины подстроить под меньшие значения скорости, то моментально упадёт коэффициент полезного действия. Это, в свою очередь, негативно отразится на эффективности охлаждения.
Многих интересует, что же значит коллекторный двигатель. Фактически это электромашина переменного тока, способная с лёгкостью преобразовывать постоянный ток в механическую полезную энергию. При этом минимум одна обмотка соединяется с основным коллектором.
В зависимости от комплектации и входящих в состав моторчика компонентов, коллекторные двигатели (КД) могут применяться в игрушках, радиоуправляемых моделях и в автомобильных, выступая в качестве составляющего элемента системы охлаждения, вентиляции, стеклоочистителей, насосов омывателя ветрового стекла и пр.
Ведущим производителям удалось создать универсальные моторы коллекторного типа, которые способны функционировать на всех видах тока, то есть на переменном и постоянном. Они нашли широкое применение при создании электрических инструментов, бытовой техники, на ЖД транспорте. Их преимущество в небольшом весе и компактных размерах при достаточно адекватной цене.
Независимо от того, какая полярность у двигателя, этот электромотор будет всегда осуществлять вращения только в одном направлении, то есть в одну неизменную сторону. Это объясняется последовательным соединением роторным и статорных обмоток, что провоцирует одновременную смену полюсов. Потому момент всегда направлен в одну и ту же сторону.
Базовыми составляющими компонентами КД являются:
- Двухполюсный статор, имеющий в своей основе постоянные магниты. В конструкции используются изогнутые магниты соответствующей формы;
- Ротор трёхполюсного типа. Здесь также применяются специфические подшипники, обладающие эффектом скольжения;
- Пластины из меди. Они применяются в роли щёток для двигателя коллекторного типа.
Набор действительно минимальный, потому встречается в основном в наиболее бюджетных и простых версиях коллекторных электромоторов. В их числе моторчики детских игрушек, которые не нуждаются в повышенной мощности.
Если вы хотите получить более качественный КД, тогда в его состав добавляют:
- многополюсные роторы с подшипниками качения;
- графитовые щётки;
- четырёхполюсный статор на основе постоянных магнитов.
Чтобы добиться высокой эффективности, в состав КД включили несколько основных компонентов. А именно:
- Коллектор. Фактически основообразующий элемент двигателя, вступающий в контакт с рабочими щётками. В итоге эти два компонента начинают распределять электроток по катушкам якорной обмотки;
- Статор. Выступает в качестве неподвижной составляющей двигателя;
- Якорь. Обязательный элемент коллекторных электромоторов. Внутри него индуцирует электродвижущая сила и проходит ток. Важно добавить, что якорем может выступать ротор и статор;
- Индуктор. Особая система возбуждения, входящая в состав электромотора коллекторного типа. Служит для создания магнитного потока для того, чтобы вовремя создавать крутящий момент. На индукторе обязательно присутствует возбуждающая обмотка или постоянные машины;
- Щёточки. Щётки входят в состав цепи, по которой следует электрическая энергия от поставщика к якорю. Щётки изготавливаются из высокопрочного графита. В зависимости от конкретного КД, моторчик оснащается 1 парой щёточек и более.
Вне зависимости от компоновки и входящих в состав элементов на основе тех или иных материалов, принцип работы у всех коллекторных типов двигателей остаётся одинаковым.
Принцип работы
Вам будет не сложно представить 2 магнита, у которых есть разные плюса. Попробуйте приставить их друг к другу одноимённым полюсом и посмотрите, что из этого получится. Вам не удастся соединить их, как бы ни старались. Но стоит соединить магниты разными полюсами, как создастся высокопрочное соединение. Именно этот эффект входит в основу работы и устройства коллекторных двигателей.
Схема электродвигателя коллекторного типа
Вы узнали про устройство КД. Теперь в процессе эксплуатации наверняка захочется узнать, как можно самостоятельно проверить коллекторный двигатель. Для этого следует разобраться в принципе его работы. Функционирует электромотор такого типа следующим образом:
- электрический ток поступает на якорные обмотки;
- в зависимости от того, сколько обмоток используется на моторе, ток поочерёдно поступает на каждую из них;
- тем самым создаётся электромагнитное поле;
- с одной стороны южный полюс, а с другой — северный;
- магнитное поле, появляющееся в обмотках, вступает во взаимодействие с полюсами магнитов статора моторчика;
- это позволяет привести в движение, то есть заставить вращаться якорь;
- ток, проходя через коллектор и щёточки, приходит на следующую обмотку;
- так происходит последовательно, в зависимости от числа якорных обмоток;
- переходя с обмотки на обмотку, вал мотора вместе с якорем начинают вращаться;
- вращение происходит до тех пор, пока есть источник напряжения.
В стандартных моторах коллекторного типа предусматривается использование трёхполюсного якоря. То есть он имеет 3 обмотки. Это позволяет двигателю не залипать в одном из положений.
Преимущества и недостатки
Нельзя отрицать тот факт, что коллекторные движки или же коллекторные электрические двигатели активно применяются в различных сферах и отраслях. В том числе они часто используются в автомобильном производстве.
Но для объективности нужно добавить, что КД используется не всегда и не везде, поскольку в конкретных ситуациях более эффективным и рациональным решением станет бесколлекторный электромотор.
Большой опыт в использовании КД позволяет выделить ряд сильных и слабых качеств эксплуатации такого типа электродвигателя.
Внутреннее строение коллекторного асинхронного двигателя
К основным достоинствам можно отнести следующие моменты:
- Сравнительно небольшой показатель параметров пускового тока. Это заметно проявляется в ситуациях, когда коллекторные моторы устанавливаются в различную бытовую технику;
- Такие электромоторы можно подключать напрямую к энергоносителю, то есть к сети. При этом исключается необходимость в использовании разного рода дополнительных и вспомогательных приспособлений;
- Высокие показатели быстроходности;
- Независимости от параметров сетевой частоты;
- При наличии схемы управления устройство становится проще.
Но не стоит делать поспешные выводы. Сначала нужно взглянуть на имеющиеся минусы коллекторного двигателя. А именно:
- Общие показатели коэффициента полезного действия снижены. Это обусловлено наличием индуктивности, а также потерь, необходимых для перемагничивания статора;
- Максимальные показатели крутящего момента далеки от совершенства;
- Сравнительно низкий уровень надёжности;
- Относительно небольшой срок службы.
Специалисты выделяют один ключевой недостаток, характеризующий коллекторные типы электромоторов. Никто не спорит, что в коллекторниках очень удобно регулировать обороты. Но если они высокие, сразу же проявляют себя щётки. Причём не с самой лучшей стороны. Щётки всё время находятся в состоянии плотного прилегания к самому коллектору электромотора. При высокой скорости работы начинает их быстрый износ. С течением времени происходит засорение, результатом чего становится появление искр.
Постепенный износ щёток двигателя и всего узла коллектора с щётками способствует снижению общих показателей эффективности работы КД. То есть коллекторно-щёточный узел смело можно считать главным недостатком конструкции. Потому производители всё чаще отказываются от коллекторников, выбирая вместо них бесщёточные аналоги.
Главным конкурентом коллекторного типа электродвигателя выступает бесколлекторный аналог. Он имеет отличный от КД принцип работы, а также характеризуется своими сильными и слабыми сторонами.
Бесколлекторный мотор
Теперь можно поговорить о том, чем же коллекторный двигатель в действительности отличается от рассматриваемого бесколлекторного аналога.
Внешний вид двигателя бесколлекторного типа
Очевидная разница просматривается при изучении принципа работы бесколлекторного двигателя (БКД). Хотя часто бесколлекторный и коллекторный двигатель сопоставляют друг с другом, воспринимая их как конкурентов, по сути это два разных мотора. Потому и отличия между ними обязательно присутствуют.
Фактически БКД работает наоборот.
- В конструкции не предусмотрено наличие щёток и самого коллектора, что становится очевидным уже исходя из самого названия;
- Если говорить о магнитах, то в случае с бесколлекторником они размещаются обязательно вокруг вала. При этом магниты выполняют роль или функции ротора;
- Обмотки с несколькими магнитными полюсами располагаются вокруг установленного ротора;
- На роторе присутствует датчик. Он же сенсор. Его задача заключается в контроле положения ротора и передаче полученной информации на процессор;
- Этот процессор работает параллельно с регулятором скорости, который отвечает за скорости вращения. Суммарно за 1 секунду обмен информацией происходит около 100 раз минимум.
Подобное устройство и принцип работы позволяет получить более плавный режим работы двигателя при его максимальной отдаче.
В случае с бесколлекторными электродвигателями они могут оснащаться датчиками или сенсорами, а также эксплуатироваться без них. Если датчика нет, это в определённой, но незначительной степени снизит эффективность работы всего электродвигателя.
Распознать БКД с сенсором и без него достаточно просто. Если у обычного двигателя присутствует 3 провода питания, то в моделях с датчиком дополнительно имеется шлейф, состоящий из тонких проводов. Он идёт от самого моторчика к регулятору скорости.
Преимущества и недостатки
Главный и неоспоримый плюс бесщёточных электромоторов заключается в практически полном отсутствии деталей, способных изнашиваться. Говорить о полном их отсутствии нельзя, поскольку роторный вал устанавливается на подшипники. Именно они всё же могут с течением времени износиться. Хотя даже у подшипников ресурс огромный. Плюс всегда можно быстро и без особого труда заменить подшипник в случае его износа.
Бесколлекторный бесщеточный электродвигатель в разборке
Такие особенности конструкции породили преимущества в виде надёжности, высокой эффективности и длительного срока службы. За счёт наличия датчика положения ротора улучшается его производительность и точность в процессе работы.
Вспомните недостаток коллекторных аналогов, где щётки искрятся и быстро изнашиваются, параллельно провоцируя помехи в процессе работы узла, механизма или машины, в которой установлен КД. В случае с бесколлекторными или бесщёточными моторами от такой проблемы удалось избавиться. Никаких искрений здесь не наблюдается.
Бесколлекторники не трутся, не перегреваются, что также справедливо относится к весомым достоинствам механизма. Дополнительное обслуживание в процессе даже очень активной эксплуатации тут не требуется.
Если же говорить про недостатки, то из существенного и всё равно условного можно выделить только один минус. Это более высокая стоимость. Минус условный по причине того, что при своей цене исключается необходимость в замене пружин, якоря, коллектора или щёток. Потому стоимость целиком и полностью себя оправдывает.
Далее уже можно сделать собственные субъективные выводы, отталкиваясь от приведённой выше информации.
Что такое без коллекторные двигатели
Разработка, производство и продажа шаговых, вентильных, коллекторных электроприводов. Продажа электродвигателей, мотор-редукторов.
по России звонок бесплатный
Сравнение коллекторных и бесколлекторных (вентильных) двигателей.
- Бесколлекторные двигатели
- Коллекторные двигатели
Обладают щёточно-коллекторным узлом. Необходимость в коллекторе и щётках увеличивает размер двигателя.
Работа такого двигателя достаточно проста: с помощью постоянного тока от источника (аккумулятор, батарея) подаётся напряжение и двигатель начинает работать. Для изменения направления движения необходимо просто поменять полярность подаваемого тока. Это один из самых простых механизмов, который, из-за своей простоты, является самым дешёвым, а КПД такого двигателя примерно 60%.
В коллекторных двигателях с графитовыми щётками, щётки требуют периодичного обслуживания, поэтому двигатели должны находиться в доступном месте. Падение напряжения на щётках снижает эффективность коллекторных двигателей.
Трение щёток о коллектор повышает шум, а также может вызвать появление дуги и увеличение электромагнитных помех (EMI), в худшем случае, могут генерироваться искры, что делает щёточные электродвигатели постоянного тока непригодными для использования во взрывоопасных средах.
- Работа без использования управляющего контроллера
- Небольшая стоимость
- Простая конструкция
- Ремонтопригодность
- Низкий КПД относительно бесколлекторного мотора
- Невысокие скорости вращения
- Быстрый износ щёток
- Искрообразование в щёточном узле
Коллекторный двигатель является бюджетным и простым вариантом преобразования электрической энергии в механическую.
Бесколлекторные двигатели постоянного тока (Вентильные двигатели)
Альтернативой являются бесколлекторные двигатели постоянного тока (BLDC) (Вентильные двигатели (ВД)).
Двигатели BLDC представляют собой синхронные двигатели с постоянными магнитами. Постоянные магниты установлены на роторе, а статор состоит из ламинированной рамы с катушками. В результате ротор не нуждается в какой-либо проводке, и двигатель не нуждается в коллекторе и щётках.
Для согласования распределения магнитного поля, генерируемое обмотками статора, с распределением магнитного поля ротора, в вентильных двигателях контролируется угловое положение ротора, энкодером обратной связи, построенном на датчиках Холла. Эта обратная связь используется для управления переключением тока на обмотках.
Поскольку в бесколлекторных двигателях не применяются щётки и коллекторы, – они более компактны, чем коллекторные двигатели. Они обеспечивают более высокую производительность в одном типоразмере.
Отсутствие щёток снижает необходимость обслуживания и позволяет ротору вращаться на более высоких скоростях. Отсутствие трения устраняет вероятность искрения и снижает электромагнитное помехи (EMI). Отсутствие падения напряжения на щ`тках также повышает эффективность BLDC двигателей.
С другой стороны, двигатели BLDC сложнее, чем их коллекторные аналоги. Обязательное применение контроллеров управления значительно увеличивает их стоимость.
- Из-за отсутствия щёток меньше трения
- Меньше подвержены износу
- Отсутствие искр и возможного возгорания
- У инструментов с реверсом одинаковая мощность в обоих направлениях вращения
- Значительно дороже в цене, чем коллекторные двигатели
- Более сложное техническое обслуживание
Как работает бесколлекторный двигатель постоянного тока
Узнайте обо всех достоинствах бесколлекторных двигателей, а также о преимуществах и недостатках выбора этого типа двигателей для вашего проекта.
Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассмотрим наиболее популярные типы двигателей, которые используют разработчики. Сначала мы рассмотрели коллекторные двигатели постоянного тока. Теперь давайте посмотрим на их ближайший аналог: бесколлекторный двигатель постоянного тока.
Чтобы узнать, для каких проектов лучше всего подходят бесколлекторные двигатели постоянного тока, ознакомьтесь с обзором:
Обзор бесколлекторных двигателей постоянного тока
Бесколлекторные двигатели – это новая технология двигателей, быстро внедряемая в высокотехнологичных приборах и электромобилях (например, Tesla Model S) в качестве замены коллекторных двигателей постоянного тока. Они также чрезвычайно распространены в любительских летательных аппаратах, включая многомоторные. Поскольку бесколлекторные двигатели постоянного тока не имеют коллектора и щеток (что очевидно), они работают без многих ограничений коллекторных двигателей постоянного тока.
Бесколлекторные двигатели постоянного тока обычно используются в многомоторных летательных аппаратах из-за их высокой скорости и эффективности
Как они работают?
Бесколлекторные двигатели постоянного тока обычно используются в многомоторных летательных аппаратах из-за их высокой скорости и эффективности.
Оценка характеристик бесколлекторных двигателей
Как и коллекторные двигатели постоянного тока, бесколлекторные двигатели работают путем изменения полярности обмоток внутри двигателя. Магнитные поля, создаваемые при возбуждении обмоток, оказывают толкающее воздействие на постоянные магниты, расположенные вокруг внешнего корпуса.
На бесколлекторном двигателе постоянного тока вращается не вал двигателя, а внешний корпус. Поскольку центральный вал, к которому прикреплены обмотки, является неподвижным, питание может подаваться непосредственно на обмотки, что устраняет необходимость в щетках и коллекторе.
Без щеток бесколлекторные двигатели изнашиваются намного менее быстро, чем коллекторные двигатели постоянного тока. Они работают с гораздо меньшим звуковым и электрическим шумом и способны работать на гораздо более высоких скоростях.
Из чего состоит бесколлекторный двигатель постоянного тока
Бесколлекторные двигатели постоянного тока только недавно начали использоваться в потребительских товарах и любительских проектах, потому что их сложно контролировать.
В то время как коллекторные двигатели постоянного тока для изменения полярности обмоток используют просто вращение самого двигателя, бесколлекторные двигатели постоянного тока управляются активно и требуют сложной схемы управления обмоткой, которая также должна масштабироваться при увеличении скорости.
Только благодаря тому, что микроконтроллеры стали дешевле и доступнее, стало возможным, чтобы недорогие системы могли удерживать правильную частоту вращения, необходимую для работы двигателя.
Достоинства бесколлекторных двигателей постоянного тока
Низкий износ
Единственным физическим интерфейсом между вращающейся внешней стороной корпуса двигателя и стационарными обмотками внутри являются шарикоподшипники, что означает, что бесколлекторные двигатели постоянного тока изнашиваются очень медленно.
Высокая скорость
Бесколлекторные двигатели имеют намного меньшее трение, чем коллекторные двигатели постоянного тока, поэтому они могут работать на более высоких скоростях.
Высокая эффективность
По сравнению с другими типами двигателей бесколлекторные двигатели обладают очень высокой эффективностью работы, что означает более низкое энергопотребление при той же выходной мощности по сравнению с коллекторными двигателями постоянного тока.
Недостатки бесколлекторных двигателей постоянного тока
Очень высокая сложность управления
Бесколлекторные двигатели постоянного тока для правильной работы требуют специализированных контроллеров и сложных алгоритмов управления.
Высокая цена
Стоимость самих двигателей не слишком высока, но когда добавляется стоимость контроллера, общая стоимость использования бесколлекторного двигателя постоянного тока в проекте становится относительно высокой.
Необходимость специализированных передач
В таких приложениях, как вакуумные пылесосы Dyson, бесколлекторные двигатели постоянного тока должны быть снабжены передачей для преобразования высоких скоростей до нужной скорости.
Коллекторные и бесколлекторные электродвигатели постоянного тока. Устройство и принцип работы
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Трудно себе представить современное производство без различного оборудования и без электродвигателей, которые приводят его в действие. Исправная работа электродвигателя – гарантия качественного производственного процесса в любой промышленной отрасли.
Устройство электродвигателя постоянного тока таково, что он может работать только от постоянного тока. Данный вид электродвигателей разделяются на двигатели с коллектором и без него.
Коллекторный двигатель
Этот двигатель имеет коллектор, ротор, индуктор, статор, якорь, щетки. Ротор вращается, в отличие от статора, который неподвижен. Частью коллекторного устройства является индуктор, который создает магнитный поток и организует время, когда происходит возбуждение двигателя. Индуктор обладает обмоткой или магнитами. Якорь также является частью коллекторного двигателя. Частью устройства является пара щеток. Электрический ток, поступающий от источника питания, подходит к якорю через щетки. Изготавливают их из графита, хотя могут использоваться и другие материалы. Обычно коллекторные электродвигатели постоянного тока имеют две щетки, но, могут быть и исключения, когда используется несколько пар. Одну щетку соединяют с плюсом источника питания, а другая соединяется с минусом.Коллектор является частью двигателя, который непосредственно контактирует с парой щеток – вместе они распределяют электрический ток по якорным обмоточным катушкам.
Электродвигатель на постоянных магнитах имеет относительно невысокую стоимость и используется во многих промышленных сферах, поскольку имеют широчайший диапазон мощностей, начиная с сотых долей Ватта, заканчивая десятками МегаВатт. Большим размахом обладает и частота вращения.
Используют электродвигатель на постоянных магнитах в устройстве бытовой техники, часто его устанавливают и в детские игрушки.
Коллекторные электродвигатели используют там, где необходима высокая скорость рабочих элементов: пылесосы, миксеры и т.п.
Бесколлекторный двигатель
Этот вид двигателей появился на рынке сравнительно недавно. Они не имеют коллекторно-щеточного узла — это является большим преимуществом, поскольку такой двигатель не создает радиопомех.
Бесколлекторный электродвигатель постоянного тока обладает высоким КПД – намного выше, чем у коллекторного собрата. При этом намного проще устроена сама конструкция двигателя, так как в ней отсутствует узел со щетками. Более того, бесколлекторные моторы имеют очень низкую степень изнашивания.
Бесколлекторные двигатели имеют подшипники, что влияет на их стоимость – она несколько выше стоимости коллекторных собратьев.
Бесколлекторный электродвигатель постоянного тока обладает самосинхронизацией. В основе его работы лежит принцип частотного регулирования – оно происходит вследствие управления вектором (направлением) магнитного поля, создаваемое статором, на которое оказывает влияние место положения ротора.
Такое влияние возможно из-за того, что ротор не что иное, как постоянные магниты, которые создают постоянное магнитное поле, а индуктор находится на роторе, т.е. в зоне влияния поля. Обмотка якоря находится на статоре. В зависимости от положения ротора формируется напряжение, питающее обмотки двигателя. Контроллер осуществляет управление током при помощи широтно-импульсной модуляции, которая протекает через обмотки двигателя.