Большая Энциклопедия Нефти и Газа
Большая Энциклопедия Нефти и Газа
Величина — динамический момент
Величина динамического момента определяется угловым ускорением привода — и его приведенным моментом инерции. [1]
Величину динамического момента электропривода определять как разность cj — ЖС) для чего необходимо знать коэффициент сы. [2]
Для получения величины динамического момента электропривода в каждый промежуток времени необходимо продифференцировать кривую скорости и построить кривую ускорения. [3]
С увеличением массы слитка величина динамического момента увеличивается. При прочих равных условиях большая величина динамического момента соответствует валку с более жесткой линией привода. Предельное значение динамического момента ограничивается коэффициентом трения между прокатываемым металлом и валком. Так как скорость прокатки в последних проходах может достигать больших значений, а величина коэффициента трения при установившемся процессе прокатки в калибрах больше, чем на бочке, за счет влияния стенок калибра при ограниченном уширении, то соударение слитков в большей степени опасно в последних проходах, особенно при прокатке холодного конца. [4]
При нелинейной зависимости динамического момента от скорости двигателя величина динамического момента привода Muaf ( n) обычно задается графически. Применяются два графоаналитических способа расчета. [6]
Заштрихованная часть между кривыми / и 2 выражает собой величину динамического момента Мд при разных скольжениях s или угловых скоростях юз вращения ротора. В точке 4 пересечения этих кривых наступает установившийся режим работы двигателя, при котором d ( oz / dt0 и Мл 0, и, следовательно, достигается равновесие вращающего и нагрузочного моментов М Мг. [8]
После этого, задавшись соответствующим ускорением и замедлением, нетрудно определить величины динамических моментов . [9]
После этого, задавшись соответствующим ускорением и замедлением, нетрудно определить величины динамических моментов . [11]
Вследствие этого приращение момента электродвигателя ЛУИ после срабатывания моментного выключателя и величина динамического момента / Идин ( рис. 2) при торможении, которые определяются общей жесткостью, будут меньше. Недостатком данного привода является усложнение конструкции кинематической передачи и ограничение момента только при движении в сторону закрывания. [12]
Испытания автомобиля ГАЗ-51 на динамометрических плитах позволили установить связь между нарастанием величины динамического момента на полуоси ведущего колеса и в зоне контакта колеса с дорогой. До проведения указанных опытов существовало мнение, что передача динамического момента через шину происходит с довольно значительным запаздыванием по сравнению с ростом динамического момента на полуоси автомобиля. [13]
Воспользовавшись характеристиками двигателя и вентилятора, приведенными на рис. 17.1, можно найти величину динамического момента МЛЯ — М — Мс, благодаря которому происходит ускорение электропривода. [14]
Как показывают исследования, исключение из рассмотрения диссипативных характеристик звеньев приводит к существенному завышению величин динамических моментов в соединениях и к ошибкам в оценке продолжительности процесса стопо-рения. [15]
Что является причиной возникновения динамического момента Мдин?
Что является причиной возникновения динамического момента Мдин?
Реактивный Мс – действует только при движении и направлен всегда против движения (см. рисунок 2.3).
Например: момент, создаваемый силами трения, обусловленный резаньем металла.
Чтобы ЭП вращался , момент двигателя М должен преодолевать статический момент Мс. Если М≠Мс, то возникает динамический момент:
Известно, что динамический момент определяется уравнением . Что здесь является первичным, то есть динамический момент создает ускорение электропривода или ускорение создает динамический момент?
Динамический момент создает ускорение. Объясним, рассмотрев уравнение движения привода.
Из уравнения следует, что направление Mдин совпадает с направлением ускорения.
В зависимости от знака динамического момента различаются следующие режимы работы привода.
Mдин>0, т.е. dω/dt>0 при ω>0 разбег; при ω 0 – торможение.
Mдин=0, т.е. dω/dt=0: установившийся режим, т.е. ω=const.
В нерегулируемых приводах двигатель создает динамический момент, который и ускоряет эту систему.
Чем выше этот момент, тем больше ускорение
Какие механизмы в машиностроении обладают: реактивным статическим моментом; активным статическим моментом?
Реактивным статическим моментом называют момент, возникающий как реакция среды на движение электромеханической системы. Реактивный момент действует только во время движения и всегда навстречу ему. Поэтому при изменении направления движения реактивный момент изменяет направление действия и во всех случаях будет тормозным (отрицательным).
Реактивный момент создают силы трения, например, трение крыльчатки вентилятора о воздух, трение шестерней в редукторе и т.п.
В системе координат ω(М) связь угловой скорости ω и статического момента Мпоказана при помощи вертикальных линий, проходящих через 1 –й и 3–й квадранты (рис. 1.2, б).
В общем случае статический момент представляет собой алгебраическую сумму моментов во всех частях рабочей машины. Если в электроприводе вентилятора создается только статический реактивный момент, то в электроприводе лебедки действую одновременно два момента – активный, созданный подвешенным грузом, и реактивный, созданный силами трения в редукторе и в двигателе.
Поэтому в общем случае статический момент находится как алгебраическая сумма реактивного и активного моментов, т.е.
М = ± М р ± М а. (2.2)
Каково условие устойчивого статического режима разомкнутой системы электропривода?
Условия для устойчивого статического режима.
Это когда электромагнитный момент электродвигателя равен моменту статическому и динамический момент равен нулю.
Каковы причины редкого применения электродвигателей постоян-ного тока в электроприводах механизмов нефтегазодобывающей промышленности?
Существенным недостатком машин постоянного тока, во-первых, является их значительно более сложная конструкция, чем машин переменного тока, во-вторых, высокая стоимость, причем не только изготовления, но и обслуживания, в-третьих, наличие щеточно-коллекторного узла
У машин постоянного тока допустимый момент регламентируется условиями их нагрева и условиями комутации
Почему, с физической точки зрения, критический момент асинхронной машины в рекуперативном режиме больше, чем в двигательном?
Режим рекуперации осуществляется при скорости вращения ротора, большей, чем скорость вращения поля статора, то есть при ω>ω и S ωгр энергия, поступающая с вала электродвигателя, не отдается в сеть, а рассеивается в виде потерь в электрических цепях машины. Критический момент в генераторном режиме больше, чем в двигательном, в результате того, что при равных модулях скольжения ток в генераторном режиме всегда больше, чем в двигательном, и эта разница увеличивается при увеличении активного сопротивления статора
В каком установившемся режиме, с точки зрения распределения энергии, будет работать асинхронная машина после изменения порядка чередования фаз: — при реактивном статическом моменте, — при активном статическом моменте?
— при реактивном статическом моменте, Режим динамического торможения — при активном статическом моменте. Режим противовключения |
Что является причиной возникновения динамического момента Мдин?
Реактивный Мс – действует только при движении и направлен всегда против движения (см. рисунок 2.3).
Например: момент, создаваемый силами трения, обусловленный резаньем металла.
Чтобы ЭП вращался , момент двигателя М должен преодолевать статический момент Мс. Если М≠Мс, то возникает динамический момент:
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Статический и динамический моменты
Механическая часть ЭП – ротор (якорь) ЭД, элементы механической передачи (редуктор); ИО рабочей машины.
Движение механической части ЭП подчиняется законом механики. Рассмотрим простейшую схему ЭП:
ЭД вращает точильный круг, находящийся на валу.
М – момент на валу ЭД (вращающий);
Мс – момент сопротивления ИО (создается за счет срезания слоя металла с затачиваемого инструмента) – статический момент.
Статические моменты бывают:
Активный Мс – действует всегда в одном направлении независимо от того, находится ли система в покое или движется в ту или иную сторону.
Например: момент висящего груза (см. рисунок 2.2).
Реактивный Мс – действует только при движении и направлен всегда против движения (см. рисунок 2.3).
Например: момент, создаваемый силами трения, обусловленный резаньем металла.
Чтобы ЭП вращался момент двигателя М должен преодолевать статический момент Мс. Если М≠Мс, то возникает динамический момент :
, где – угловое ускорение.
J = m?r 2 [кг?м 2 ] – момент инерции всех вращающихся масс (m – масса тела, r – радиус инерции); J характеризует инертность привода.
Иногда в справочниках указывается не момент инерции J, а маховый момент (Mм) – произведение веса тела на диаметр инерции:
, если GD 2 в [кг?м 2 ],
, если GD 2 в [Н?м 2 ]
2.2 Уравнение движения электропривода
1) M>Мс, тогда (+), → (+), → ускорение ЭП (скорость ω ↑)
2) M=Мс, тогда =0, → ω=const (частный случай ω=0), → ЭП вращается с постоянной скоростью;
3) M механическими характеристиками производственного механизма (рисунок 2.5) :
1 – Mc = const (брус на барабане)
2 – Mc
ω (генератор постоянного тока с независимым возбуждением, работающий на R=const)
ω 2 (вентиляторы, компрессоры)
Зависимости ω=f(Mc), n=f(Mc) – называются механическими характеристиками ЭД (рисунок 2.6) .
1 – Синхронный двигатель;
2 – ЭД постоянного тока независимого возбуждения;
3 – ЭД постоянного тока последовательного возбуждения;
4 – Асинхронный двигатель;
Если графики 2.5 и 2.6 совместить, то получим точку установившегося режима.
В точке А (рисунок 2.7) Мс=М, значит это точка установившейся работы (со скоростью ωуст)
2.4 Жесткость характеристики
1 – абсолютно жесткая (СД)
2 – жесткая (ДПТ НВ, АД)
3 – мягкая (ДПТ ПВ, АД с добавочным сопротивлением в цепи ротора)
4 – абсолютно мягкая (груз на валу)
2.5 Приведение статических моментов и моментов инерции
Элементы механической части ЭП связаны между собой и оказывают друг на друга воздействие.
Приведение –пересчет входящих в уравнение движения сил, моментов, масс, моментов инерции к элементу, движение которого рассматривается (чаще к валу ЭД).
Для расчетов реальную систему (ЭД, редуктор, барабан, груз – см. рисунки 2.10, 2.12, 2.13) приводят в простейшую (см. рисунок 2.9, 2.11).
ПИМ – приведенный исполнительный механизм.
1) при данной скорости вращения ЭД мощность, требуемая ПИМ должна быть равна мощности реальной системы;
2) при данной скорости ЭД запас кинетической энергии ПИМ должен быть равен реальной системы.
I. Приведение Мс:
1. Вращательное движение ИМ.
– формула приведения момента сопротивления
2. Поступательное движение ИМ.
Р2=mgv – мощность, требующаяся для подъема груза
С учетом потерь:
Приведенный момент сопротивления
, где – радиус приведения
3. Двигатель через редуктор вращает барабан и поднимает груз.
где – радиус приведения
4. Спуск тяжелых грузов.
Опускание происходит за счет веса груза. Чтобы скорость была постоянной, ЭД должен развивать тормозящий момент. Энергия передается от груза к валу двигателя (т.е. наоборот), → ЭД развивает меньший момент.
Режимы работы электропривода, динамический момент
Дата добавления: 2015-09-15 ; просмотров: 6558 ; Нарушение авторских прав
Работа электромеханической системы электропривод – исполнительный механизм происходит при взаимодействии различных сил и моментов. Один из моментов создаётся электродвигателем, он приводит систему в движение и называется электромагнитным моментом , другие силы тормозят её (систему) и создают статический момент сопротивления – М . За положительное направление статического момента принимают направление, противоположное моменту двигателя.
Электропривод работает в двух режимах:
1.установившийсяили статическийрежим,это режим при котором скорость приводане изменяется;
2. переходныйили динамический режим, это режим при котором скорость изменяется.
Переходный режим может возникнуть в следующих случаях:
1. при изменении параметров двигателя, например, изменение сопротивления в цепи ротора; изменение числа пар полюсов статора и т.д.;
2. при изменении нагрузки механизма, например изменение подачи насоса, изменение величины сил трения якоря по грунту и т.д.;
3. при изменении параметров судовой сети, например, при уменьшении величины напряжения или частоты тока во время включения электродвигателей большой мощности.
В переходном режиме электропривод переходит от одного установившегося режима к другому, при этом изменяются скорость, момент, и ток электродвигателя.
В установившемся режиме электромагнитный момент равен статическому моменту и противоположен ему по направлению, апривод работает с постоянной скоростью.
В установившемся режиме электромагнитный момент равен статическому моменту и противоположен ему по направлению,
апривод работает с постоянной скоростью
. (3-1)
Но в случаях ускорения или замедления привода возникает инерционный илидинамический момент, который двигатель должен преодолеть. Во время преодоления динамического момента двигатель находится в переходном режиме.
В переходном режиме, к электромагнитному моменту двигателя и статическому моменту добавляется динамический момент , равный
, (3-2)
где: суммарный момент инерции всех элементов привода, приведенный к скорости вращения вала двигателя
– угловая скорость; – угловое ускорение.
Появление динамического момента объясняется действием сил инерции всех частей электропривода и исполнительного механизма.
Например, в электроприводе лебедки динамический момент появляется вследствие инерции якоря или ротора электродвигателя, шестерней редуктора, барабана лебёдки и т.д..
Динамический момент увеличивает время пуска и остановки электропривода, а так же время достижения установившейся скорости.
Для уменьшениядинамического момента в двигателях специального исполнения уменьшают диаметр ротора и одновременно увеличивают длину ротора, с целью сохранения мощности двигателя. Такие двигатели применяют в электроприводах грузоподъемных механизмов. Их применение позволяет сократить время пуска и остановки электропривода, а значит, повысить производительность грузовых лебедок и кранов.
Серии таких электродвигателей называются крановыми (название произошло от грузового крана).321cп24.01.13