Ионная тяга: как человечество использует электрические двигатели для полетов в космос
Ионная тяга: как человечество использует электрические двигатели для полетов в космос
Ионный двигатель является если не самым перспективным электрическим космическим двигателем, то точно одним из самых используемых сегодня в отрасли. «Хайтек» рассказывает, как работают ионные двигатели, зачем их используют и при чем тут Константин Циолковский.
Читайте «Хайтек» в
Сейчас на околоземной орбите находятся тысячи искусственных спутников, выведенных туда гигантскими (или не очень) ракетами-носителями с мощными реактивными двигателями на химическом топливе. Пока человечество не смогло придумать альтернативу таким двигателям, поскольку для преодоления гравитации Земли и развития первой космической скорости необходима мощная тяга: ее могут дать только обычные двигатели.
При этом уже в космосе спутники используют другой тип двигателей — электрические. Самым используемым является ионный двигатель — устройство, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
Типы электрических и альтернативных двигателей:
- Ионные и плазменные накопители
Тип реактивного двигателя, который использует электрическую энергию для получения тяги от топлива: ионизированного газа. Многие из таких спутников не имеют ракетные сопла.
Электродвигатели для космических кораблей могут быть сгруппированы в три семейства в зависимости от типа силы, используемой для ускорения ионов плазмы: электростатический (собственно, классический ионный двигатель), электротермический (в них электромагнитные поля используются для генерации плазмы, что приводит к повышению температуры топлива, а тепловая энергия, передаваемая газообразному топливу, преобразуется в кинетическую) и электромагнитный (или плазменный, тут ионы ускоряются путем воздействия электромагнитных полей, как правило, земного и искусственного у аппарата).
Это электрические двигатели, также использующие нехимическую энергию для своей работы, однако работающие по другим принципам, нежели ионные. Например, фотонный двигатель, позволяющий космическому кораблю перемещаться на энергии фотонов. Гипотетически так смогут работать космические аппараты, управляемые лазерными сигналами с Земли или Луны.
К этой же категории относятся эксперименты по созданию так называемого электродинамического троса, когда спутник может выбрасывать вокруг себя длинные металлические нити с разными электрическими зарядами.
Сейчас ученые разрабатывают еще несколько гипотетических видов двигателей, которые в будущем смогут давать энергию для движения космических спутников: вакуумный двигатель, двигатель внутренних радиочастот и устройство, которое будет брать энергию от полей самых маленьких частиц, например, бозонов. Работоспособность всех этих гипотез пока не доказана с точки зрения физики.
Первым человеком, который еще в 1911 году публично предложил идею создания ионного двигателя, стал российский и советский ученый, пионер космонавтики Константин Циолковский. При этом первый документ, в котором упоминается электрическая тяга для движения космических объектов, был за авторством другого пионера космонавтики, американского ученого Роберта Годдарда.
6 сентября 1906 года Годдард писал в своем дневнике, что сможет использовать энергию ионов для работы двигателей. Первые эксперименты с ионными двигателями были проведены Годдардом в Университете Кларка в 1916 году. В итоге ученый заявил, что сможет использовать их в полноценном формате только в условиях, приближенных к вакууму, тогда как в рамках тестирования их показывали при атмосферном давлении Земли.
Первый работающий ионный двигатель был построен инженером НАСА Горальдом Кауфманом только в 1959 году. В качестве топлива, в отличие от современных аналогичных двигателей, которые перерабатывают ионы газа ксенона, он использовал ртуть. Суборбитальные испытания двигателя прошли в 1964 году, когда в космос на ракете-разведчике был запущен научный зонд Sert 1 — первое в истории устройство, использующее конструкцию ионного двигателя в космосе. В 70-х годах США провели ряд повторных испытаний этой технологии.
Принцип работы ионного двигателя
Ионные двигатели используют пучки ионов — электрически заряженных атомов или молекул — для создания тяги. Основным рабочим телом ионизации является газ, иногда ртуть. В ионизатор подается это топливо, после чего туда же запускают высокоэнергетические электроны. В этой камере образуется смесь из положительных ионов и отрицательных электронов. После этого в камеру вводят специальный фильтр, который притягивает к себе отрицательные электроны, тогда как положительные ионы притягиваются к ряду сеток с большой разницей электростатических потенциалов (+1090 В на внутренней против -225 В на внешней). В результате такой мощной разницы ионы начинают разгоняться по кругу, пока не выбрасываются из устройства, ускоряя движение корабля. За ними выбрасываются и электроны, которые должны обезвредить ионы и не позволить им притягиваться обратно к двигателю.
Обычно источниками питания для ионных двигателей являются электрические солнечные панели. Однако в местах, куда солнечный свет не попадает, например, когда Земля закрывает Солнце, спутники могут использовать ядерную энергию. «Хайтек» подробно рассказывал о такой советской программе, спутники которой — с крошечными ядерными реакторами — до сих пор находятся на орбите захоронения Земли.
На сегодняшний день ионные двигатели необходимы спутникам, чтобы маневрировать в космосе, например, для изменения своего курса или уклонения от космического мусора. Существует также несколько проектов, предполагающих использование ионных двигателей для дальних космических путешествий.
Самый яркий пример использования ионных двигателей для дальних путешествий — автоматическая исследовательская миссия Dawn от НАСА. В сентябре 2007 года она была запущена для исследования астероида Веста и карликовой планеты Церера.
Dawn оборудована тремя ксеноновыми ионными двигателями NSTAR. Они установлены в нижней части аппарата: один вдоль оси, еще два — на передней и задней панелях. Принцип работы этих двигателей состоит в ускорении в электрическом поле ионов ксенонового топлива. Двигатели длиной в 33 см, диаметром сопла в 30 см и массой 8,9 кг разгоняют атомы до скорости в десять раз выше, чем могут это сделать современные химические двигатели. Ускорение и торможение обеспечивается за счет установленных на борту Dawn солнечных батарей и уровня подачи топлива.
Для полета Dawn было необходимо всего 3,25 мг топлива в секунду. Из 425 кг рабочего тела (ксенона), имеющегося на борту, на полет Земля — Веста предполагалось израсходовать 275 кг, на полет Веста — Церера — 110 кг.
Миссия Dawn стала не только одной из самых энергоэффективных в истории космонавтики, но и установила несколько рекордов скорости. 5 июня 2016 года — спустя девять лет после запуска — станция Dawn разогналась до 39 900 км/час (11,1 км/с).
1 ноября 2018 года НАСА официально закончила миссию Dawn, поскольку ионные двигатели полностью выработали топливо. Последние несколько лет инженеры НАСА занимаются разработкой новых двигателей, рассчитанных на увеличенное количество ксенона. В этих разработках пока есть сложность, поскольку увеличение веса станции за счет топлива негативно сказывается как на скорости передвижения аппарата, так и на дальности полета.
Еще одним космическим аппаратом, который использует ионные двигатели для дальних полетов, стала японская исследовательская станция по изучению астероида Рюгу «Хаябуса-2». Зонд, на котором установлены четыре ионных двигателя IES, может менять направление полета за счет этих двигателей. Они могут поворачиваться в разные стороны, но за счет электромеханической системы, питающейся от солнечных батарей. При этом ксенон массой в 73 кг хранится в 51-литровом топливном баке: такую конфигурацию удалось получить за счет того, что этот газ в полтора раза плотнее воды, и, соответственно, занимает меньше места.
Пока космические агентства исследуют возможное применение ионных двигателей в будущем. НАСА запланировало даже установить ионный двигатель нового поколения ISS Vasimr на МКС. Однако в 2015 году отменило этот проект, заявив, что пока «МКС не является идеальной демонстрационной площадкой для работы двигателей такого типа». Дело в том, что Vasimr должен был стать первым полноценным электротермическим ракетным двигателем, который позволил бы создавать тягу, аналогичную химическим двигателям. Это позволило бы в будущем использовать его даже для запусков ракет-носителей с Земли.
НАСА пришло к решению отменить тестирование Vasimr, поскольку ученые до конца не смогли найти источник энергии, на котором бы работал этот двигатель. Самым перспективным источником энергии могла стать термоядерная установка, однако ее использование на МКС могло быть небезопасной.
Из-за этого сейчас ионные двигатели продолжают рассматриваться в основном в качестве дополнительных двигателей на различных спутниках, с помощью которых зонды смогут совершать маневры в космосе. Другим перспективным направлением для использования двигателей такого типа может стать космическая уборка. На орбите Земли с каждым годом появляется все больше космического мусора, а спутники с ионными двигателями могут стать идеальным решением этой проблемы.
Ионные двигатели «Центра Келдыша» будут испытаны через 5 лет
Ионные двигатели, разработанные в исследовательском центре имени Келдыша, пройдут космические испытания в 2025-2030 годах. Эксперты называют эти работы самыми перспективными для освоения дальнего космоса и осуществления межпланетных перелетов.
Сотрудники унитарного предприятия назвали параметры разработки: мощность от 200 Вт до 35 кВт, срок службы до 15 лет. При этом в исследовательском центре уже планируется система мощностью до 100 кВт. Предполагается, что двигатели малой мощности будут использоваться в низкоорбитальных малых космических аппаратах, высокой мощности — в тяжелых транспортных системах.
Об устройстве и значении ионных двигателей журналу «Новый оборонный заказ. Стратегии» рассказал Председатель Секции истории авиации и космонавтики СПбФ ИИЕТ РАН, заместитель председателя СПбО Русского Космического Общества Виталий Лебедев:
Ионный двигатель — один из типов электрического ракетного двигателя. Его принцип работы основан на создании реактивной тяги истекающим ионизированным газом, который разгоняется до высоких скоростей электрическим полем. То есть ионная двигательная установка (ДУ) характеризуется малой тягой и высоким удельным импульсом.
Достоинства таких двигателей — малый расход рабочего тела (топлива, в основном это инертные газы — аргон, ксенон и т.п.) и продолжительное время функционирования. Недостаток — ничтожная тяга по сравнению с обычными химическими ДУ. Поэтому ионные ДУ не могут применяться для старта с планеты, там, где необходимо преодоление сил гравитации, а используются в безвоздушном пространстве (космосе) для управления космическими аппаратами, рассчитанными на длительное функционирование при ограниченных размерах. В основном, это системы ориентации и положения искусственных спутников на орбите, или на небольших автоматических космических станциях, в качестве основного тягового двигателя.
При достаточно долгой работе, например в ходе межпланетного перелета, ионный двигатель способен разогнать космический аппарат до скоростей, недоступных сейчас никаким другим существующим видам двигательных установок. Переводя на автомобильный язык, это эффективный и экономичный двигатель для крейсерского режима движения. Ресурс работы ионных ДУ составляет от 10 тысяч до 100 тысяч часов, сейчас и у нас, и за рубежом ведутся работы по увеличению мощности таких двигателей.
Впервые идея подобного двигателя была выдвинута фантастами в 1910 году (роман Дональда В.Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей»). Теоретическую базу создания таких ДУ впервые сформулировал Роберт Годдард в 1917 году. Но лишь в 1954 году Эрнст Штулингер сделал необходимые расчёты.
В 1930-х годах в Ленинграде уже велись работы над электроракетными двигателями, разновидностью которых стали ионные ДУ, основной прорыв произошел в конце 1950-х. И уже в 1964-м году на советский КА «Зонд-2» был установлен в том числе плазменно-эрозионный двигатель конструкции А.М. Андрианова. Он работал как двигатель ориентации и питался от солнечных батарей.
Сегодня при планировании дальнейшего освоения космического пространства, а также перспектив межпланетных исследований разработка подобных ДУ вместе с развитием ядерно-энергетических установок становится самым перспективным направлением исследований.
Большая Энциклопедия Нефти и Газа
Ионный двигатель
Малоисследованными являются вопросы использования в космосе емкостных электрических машин. Таким образом, образуется реактивная тяга и космический аппарат получает ускорение. Создаваемый ионным двигателем реактивный момент достаточен для космических полетов в космосе. [47]
Для запуска ракеты с Земли требуется двигатель, сила тяги которого больше силы тяжести ракеты на старте. Поэтому ионный двигатель непригоден для осуществления старта ракеты с Земли. Незначительный расход массы при работе ионного двигателя позволяет увеличить массу полезной нагрузки и длительность работы ионного двигателя по сравнению с жидкостным реактивным двигателем. [48]
Для запуска ракеты с Земли требуется двигатель, сила тяги которого больше силы тяжести ракеты на старте. Поэтому для осуществления старта ракеты с Земли ионный двигатель непригоден. Малый расход массы при работе ионного двигателя позволяет значительно увеличить как массу полезной нагрузки, так и длительность работы ионного двигателя по сравнению с жидкостным реактивным двигателем. [49]
Для запуска ракеты с Земли требуется двигатель, сила тяги которого больше силы тяжести ракеты на старте. Поэтому ионный двигатель непригоден для осуществления старта ракеты с Земли. Незначительный расход массы при работе ионного двигателя позволяет увеличить массу полезной нагрузки и длительность работы ионного двигателя по сравнению с жидкостным реактивным двигателем. [50]
Для запуска ракеты с Земли требуется двигатель, сила тяги которого больше силы тяжести ракеты на старте. Поэтому для осуществления старта ракеты с Земли ионный двигатель непригоден. Малый расход массы при работе ионного двигателя позволяет значительно увеличить как массу полезной нагрузки, так и длительность работы ионного двигателя по сравнению с жидкостным реактивным двигателем. [51]
В электротехнике цезий и рубидий применяют в производстве светящихся трубок, а также вводят в состав люминесцентных веществ, используемых при изготовлении светящихся разрядных трубок. В рентгенотехнике соединения цезия и рубидия применяют для увеличения адсорбции рентгеновских лучей экранами из ZnS. Легкая ионизируемость цезия и рубидия создает возможность использования их в приборах и установках, связанных с непосредственным превращением тепла в электрическую энергию, ионных двигателях , термоэлектрических генераторах. [52]
В последнее время проявляется интерес к небольшим ракетным двигателям на жидком топливе с охлаждением за счет излучения, используемым в основном в целях регулирования направления полета. В этой связи прежде всего привлекают внимание сплавы на основе тантала вследствие и-х высокой температуры плавления и хорошей технологичности. Ядерные ускорители, пульсирующие реактивные и ракетные двигатели, рабочие температуры в которых достигают 2200, предъявляют особые требования к тугоплавким металлам как к конструкционным материалам для топливных элементов. В ионных двигателях вольфрам, видимо, может быть с успехом использован в качестве материала для поверхности ионизации, а ниобий или молибден — для элементов систем хранения жидкого или газообразного цезия. [53]
Каяедый ион в отдельности, выбрасываемый таким генератором, дает микраим-пульс, однако действие каждого толчка продолжаешся достаточно долго, поскольку космический корабль движется по орбите в безвоздушном пространстве, где трение фактически полностью отсутствует. Постепенно ускоряясь засчет постоянных, хотя, чи слабых ионных импульсов, ракета может достичь огромных, скоростей. Оптимальным веществом для таких ионных двигателей является цезий, который легко расстается со своим единственг ньш внешним электроном и ионы которого — под действием направленного электрического поля — разгоняют корабль по принципу реактивного двигателя. [54]
Другой интересный путь возможного использования относительно легкой иони-зируемости атомов щелочных металлов связан с проблемой ионного двигателя. Если ионизацией паров ( например, в электрической дуге) создать плазму, затем электрическим полем разделить ионы Э и электроны, разогнать их при помощи ускорителей и вновь соединить у выхода из сопла ракеты, то вылетающий поток атомов создает реактивную тягу. Последняя очень мала, но может быть использована уже находящейся в космическом пространстве ракетой для постепенного набора скорости или изменения траектории полета. Подсчеты показывают, что расходующий 500 г цезия в час ионный двигатель способен обеспечить космическому кораблю с массой в I тыс. т ускорение порядка 1 м / сек2 и конечную скорость до 150 тыс. км / сек. Источником энергии при этом должна быть атомная электростанция. [55]
Ведутся исследования в области электроракетных двигателей и бортовых энергетических комплексов, ионно-плазменных технологических установок, фотонной энергетики и плазменных лазеров, термоядерных установок. К некоторым результатам этих исследований можно отнести выводы о том, что любой тип электрического ракетного двигателя можно перевести на питание переменным током практически без ухудшения параметров, сократив при этом массу энергодвигательной установки и повысив ее надежность. Установлены параметры выпрямления токов низкого и высокого напряжения в плазме камеры ионизации ионных двигателей , характеристики ионно-оптических систем при питании переменным током. Выполнены фундаментальные исследования по плазмо-динамическим методам накачки лазеров, разработаны научные основы и принципы создания коротковолновых плазменных лазеров, работающих в ультрафиолетовой области спектра. Выполнены исследования и расчеты свойств плазмы различных веществ, сформулировано новое направление — радиационная плазмодинамика. Под руководством профессора В.И. Хвесюка успешно проведены исследования по разработке физико-технических основ квазистационарного сильноточного плазменного ускорителя на ионном токопереносе. [56]
Одним из интересных решений этой проблемы, которое используется в газоразрядных индикаторных трубках, явилось добавление в атмосферу инертного газа небольших количеств ртути. В этом случае происходит распыление пленки ртути, конденсирующейся на катоде. Эта пленка за счет конденсации паров ртути непрерывно восполняется, защищая таким образом от распыления находящийся под ней материал катода. Проблемы эрозии электродов являются общими для всех видов ионных приборов, таких как масс-спектрометры, масс-сепараторы, ионные двигатели и плазмотроны. Если имеет место перезарядка, в частности, нейтрализация ионов, то траекторией быстрых нейтральных атомов управлять невозможно, и эффекты распыления могут наблюдаться там, где их меньше всего ожидают. Диэлектрические поверхности, соприкасающиеся с плазмой, всегда заряжаются отрицательно. [57]
Ниже рассматриваются отдельные задачи о перелетах между эллиптическими орбитами в ньютоновом гравитационном поле. В случае двигателя большой тяги и незакрепленного времени полета решение оптимальной задачи дает абсолютный минимум расхода топлива. Для двигателей малой тяги с ограниченной мощностью абсолютный минимум расхода топлива стремится к нулю, но время полета при этом должно быть бесконечно. Поэтому обсуждаемые здесь перелеты с двигателями малой тяги соответствуют асимптотическим решениям оптимальной задачи, когда время полета становится очень большим. Например, перелеты между орбитами спутников Земли представляют ограниченный интерес, так как из-за весьма малого ускорения от тяги ионного двигателя продолжительность перелета будет довольно большой. [58]
В настоящее время проводятся интенсивные работы по созданию новых типов ракетных двигателей, которые принципиально отличаются от жидкостных реактивных двигателей, использующих химическую энергию топлива. В проектах ядерных ракетных двигателей рабочее вещество нагревается в ядерном реакторе и затем вытекает через сопло. Предполагается, что таким образом удастся значительно повысить скорость истечения и. Еще более значительное увеличение скорости и предполагается осуществить в ионном ракетном двигателе. В этом двигателе реактивная сила тяги создается вследствие выбрасывания из двигателя заряженных частиц — ионов, которые предварительно разгоняются в электрическом поле до скоростей порядка сотен и даже тысяч километров в секунду. Однако сила тяги ионного двигателя fp u dm / d / не может быть сделана большой, так как секундный массовый расход dm / d /, численно равный массе всех ионов, образующихся в двигателе и выбрасываемых из него за 1 с, крайне невелик. [59]
ПОРИСТЫЕ МАТЕРИАЛЫ — материалы, общей характерной чертой к-рых является пористость. В зависимости от назначения материала пористость изменяется в широких пределах. Из них изготовляют пористые подшипники, в частности подшипники скольжения, преим. В качестве твердых смазок в них используют графит, сульфиды и др. компоненты; поры заполняют маслом. Их применяют в узлах трения машин и приборов. Подшипники отличаются высокой износостойкостью и низким коэфф. Низкопористые материалы служат также для создания пористых эмиттеров различных изделий, изготовляемых в основном из вольфрамового порошка со сферической формой частиц либо из сплава вольфрама с рением. Их применяют в качестве электродов ионных двигателей . [60]
Ионно-плазменные двигатели для космических спутников
Буквально на днях познакомился с информацией о том, что украинские ученые в ближайшие 5 лет намерены производить ионно-плазменные двигатели для космических спутников.
Посмотрев видеоролик и короткое интервью с руководителем инновационного аэрокосмического кластера Виктором Поповым, которое записало Еспресо.TV на выставке «Оружие, безопасность, Авиамир» в Киеве, я решил более подробно разобраться в этой технологии. Но в начале об общей информации и о том, что сказал Виктор.
Для освоения космоса, вывода спутников на орбиту, полетов на Луну и Марс планируется использовать перспективные ионно-плазменные двигатели. В мире есть всего несколько компаний-разработчиков таких технологий, среди них — харьковские предприятия.
Как говорит автор разработки: «До этого для вывода спутников на геостационарные орбиты использовались жидкостные двигатели. Но они тяжелые, весят тонну. А ионно-плазменный двигатель вместо тонны весит 100 кг, следовательно, 1 до 10. Остальные 900 кг будет заменено аппаратурой».
Ионно-плазменный двигатель в десять раз меньше, чем обычный жидкостный ракетный двигатель и при этом способен работать в открытом космосе десятилетиями. Изготовление опытного образца уже на завершающем этапе.
«Мы ставим перед собой задачу реализовать в течение 3-4 лет, максимум 5-ти наладить серийное производство ионно-плазменных двигателей в Украине. С этого начнется время применения целого ряда ракетно-электрических двигателей в космосе, я бы так сказал», — отметил Попов.
Дело в том, что об ионных и плазменных двигателях известно уже давно, но это разные технологии отличающие друг от друга. Коротко напомню об этих технологиях.
Ионный двигатель
Еще в 1954 году американец, немецкого происхождения Эрнст Штулингер детально описал эту технологию, сопроводив её необходимыми вычислениями. Далее начиная с 70-х годов ХХ века и заканчивая 2010 годом в различных странах были разработаны и испытаны ионные двигатели на космических аппаратах, в качестве основного (маршевого) двигателя.
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.
Ионный двигатель NSTAR
Ионный двигатель использует в качестве топлива ксенон или ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против -225 вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.
Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.
Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50—100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя, есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей.
Плазменный двигатель
Плазменный двигатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.
Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена российским ученым физиком Алексеем Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.
Плазменный ракетный двигатель
Принцип работы заключается в следующем. Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами.
Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.
Возможно ли совместить эти две технологии и получить ионно-плазменный двигатель, способный поднять хотя бы 1 т в космос, преодолев земное притяжение и достигнуть те скоростные и временные характеристики преодолевая космическое пространство, как утверждает Виктор Попов, посмотрим. Пока мы видим только картинки и слышим слова.
Спасибо за прочтение. Если вам понравилось, пожалуйста, поделитесь с друзьями и в комментариях черкните пару слов своего мнения