Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механический КПД

Механический КПД

Индикаторная мощность, развиваемая тепловым двигателем, не может быть в полной мере реализована из-за потерь на преодоление трения и на привод вспомогательных механизмов, но, чтобы улучшить топливную экономичность двигателя, необходимо точно знать все эти потери. Для удобства их оценки введено понятие механического КПД ηm .

Механический КПД Отношение эффективной мощности двигателя к индикаторной.

Наиболее значительная часть потерь вызвана трением в цилиндре, меньшая – трением в хорошо смазываемых подшипниках и приводом необходимого для работы двигателя оборудования. Потери, связанные с поступлением воздуха в двигатель (насосные потери), весьма важны, так как они возрастают пропорционально квадрату частоты вращения двигателя.

Потери мощности, необходимые для привода оборудования, обеспечивающего работу двигателя, включают мощность на привод механизма газораспределения, масляного, водяного и топливного насосов, вентилятора системы охлаждения. При воздушном охлаждении вентилятор подачи воздуха является неотъемлемым элементом двигателя при его испытаниях на стенде, в то время как у двигателей жидкостного охлаждения при проведении испытаний вентилятор и радиатор часто отсутствуют, а для охлаждения используют воду из внешнего контура охлаждения. Если потребляемую мощность вентилятора двигателя жидкостного охлаждения не учитывать, то это дает заметное завышение его экономических и мощностных показателей по сравнению с двигателем воздушного охлаждения.

Другие потери на привод оборудования связаны с генератором, пневмокомпрессором, гидронасосами, необходимыми для освещения, обеспечения работы приборов, тормозной системы, рулевого управления автомобиля. При испытании двигателя на тормозном стенде следует точно определить, что считать дополнительным оборудованием и как его нагружать, поскольку это необходимо для объективного сопоставления характеристик разных двигателей. В частности, это относится к системе охлаждения масла, которое при движении автомобиля охлаждается обдувом масляного поддона воздухом, отсутствующим при испытаниях на тормозном стенде. При испытании на стенде двигателя без вентилятора не воспроизводятся условия обдува трубопроводов воздухом, что вызывает повышение температур во впускной трубе и ведет к уменьшению величины коэффициента наполнения и мощности двигателя.

Размещение воздушного фильтра и величина сопротивления выпускного трубопровода должны соответствовать реальным условиям работы двигателя в автомобиле. Эти важные особенности необходимо учитывать при сопоставлении характеристик различных двигателей или одного двигателя, предназначенного для применения в различных условиях, например, в легковом или грузовом автомобиле, тракторе или для привода стационарного генератора, компрессора и т. д.

Механический КПД различных двигателей

ДвигательМеханический КПД
Бензиновый ДВС, четырёхтактный0,75 – 0,90
Дизельный ДВС, четырёхтактный0,70 – 0,85
Двигатель типа Рикардо с гильзовым газораспределениемдо 0,92
Поршневой, бесшатунный ДВСдо 0,94
Двигатель Ванкелядо 0,92&nbsp
Роторно-лопастной двигатель (РЛД)0,65 – 0,95
Примечание. Подробнее о механических потерях в бензиновом и дизельном двигателях
в статье «Сравнение механических потерь в бензиновом и дизельном двигателях».

При уменьшении нагрузки двигателя его механический КПД ухудшается, так как абсолютная величина большинства потерь не зависит от нагрузки. Наглядным примером служит работа двигателя без нагрузки, т. е. на холостом ходу, когда механический КПД равен нулю и вся индикаторная мощность двигателя расходуется на преодоление его потерь. При нагрузке двигателя на 50% или менее удельный расход топлива по сравнению с полной нагрузкой значительно возрастает, и поэтому использовать для привода двигатель, имеющий большую, чем это требуется, мощность, совершенно неэкономично.

Механический КПД двигателя зависит от типа используемого масла. Применение в зимнее время масел повышенной вязкости приводит к росту расхода топлива. Мощность двигателя при больших высотах над уровнем моря падает вследствие уменьшения давления атмосферы, однако его потери практически не меняются, вследствие чего удельный расход топлива возрастает аналогично тому, как это имеет место при частичной нагрузке двигателя.

Стоит заметить, что высокий механический КПД не является гарантией высокого эффективного КПД двигателя.

Мощность и КПД дизеля

Мощность дизеля можно определить по индикаторной диаграмме.

Предполагая, что рабочие циклы в многоцилиндровых двигателях протекают примерно одинаково и только смещены на угол (фазу) сдвига кривошипов коленчатого вала, можно считать, что мощность, развиваемая в отдельных цилиндрах, тоже одинакова, а мощность дизеля в целом равна сумме мощностей всех цилиндров.

Выражение для подсчета индикаторной мощности двигателя можно получить, вычислив работу Ь, выполненную газами в одном цилиндре за полный цикл:

Где Р1ср — среднее индикаторное давление, Н/м2 или Па; — площадь поршня, м2; £ — ход поршня, м. Площадь поршня определяется по формуле кИ2

где Б — диаметр поршня, м.

Среднее индикаторное давление получают в результате замены площади индикаторной диаграммы равновеликим прямоугольником, у которого ордината называется среднеиндикаторным давлением.

Тогда работа, выполненная во всех цилиндрах дизеля за 1 мин:

где п — частота вращения коленчатого вала, об/мин; 1 — число цилиндров дизеля; т — тактность дизеля (т = 2 — для двухтактного и т = 4 — для четырехтактного двигателя).

Индикаторная мощность дизеля определяется по формуле где 103 — коэффициент для перевода мощности в киловатты.

Для получения индикаторной диаграммы применяют специальные приборы — индикаторы. В тихоходных ДВС (до 700 об/мин) используют механические индикаторы, а в быстроходных — электрические.

В зависимости от конструкции ДВС и его форсировки среднее индикаторное давление Р;, МПа, может меняться в широких пределах:

Четырехтактные двигатели ПД1М. 1,070

Индикаторная мощность, полученная за счет работы газов в цилиндре двигателя, при передаче на коленчатый вал расходуется на трение поршней, подшипников шатунно-поршневой группы, на привод газораспределительного механизма, топливные насосы высокого давления, водяные, масляные и топливные насосы и другие механизмы, без которых невозможна работа дизеля. Эти затраты работы называются механическими потерями Ьи, и соответствующая им мощность называется мощностью механических потерь Ыы. Аналогично индикаторной работе где Ри — среднее давление механических потерь.

Среднее эффективное давление Ре представляет собой условное постоянное давление, которое, действуя на поршень в течение одного хода, совершает работу, равную эффективной работе за цикл или это эффективная работа Ье за цикл, отнесенная к рабочему объему цилиндра:

Эффективная мощность подсчитывается так же, как и индикаторная, но вместо среднего индикаторного давления Р, в формулу подставляется среднее эффективное давление Ре.

Отношение эффективной мощности к индикаторной называется механическим КПД:

Для современных дизелей т|м = 0,8 .0,88.

Отношение эффективной работы к количеству теплоты, подведенной с топливом, называется эффективным КПД-дизеля и обозначается ту

где qe — удельный эффективный расход топлива, г/(кВтч); QH — низшая теплота сгорания дизельного топлива, кДж/кг.

При оптимальной нагрузке дизеля ге = 0,39.0,43.

Эффективный, индикаторный и механический КПД связаны между собой соотношением Ге = Л.Лм-

Эффективность работы ДВС часто оценивают вместо КПД двигателя удельным расходом топлива qe, т.е. расходом топлива на единицу его полезной (эффективной) работы, выраженным в г/(кВт-ч) или г/(л.с.ч). Удельный расход топлива определяется экспериментально при испытаниях двигателя, где измеряется расход топлива G дизелем за единицу времени работы, кг/ч, с постоянной мощностью Ne, кВт или л. с. Тогда qe = G/Ne. Современные тепловозные дизели имеют qe на уровне 200.220 г/(кВтч), или 150. 180 г/(л.с.-ч).

Что такое механический кпд двигателя

Механический коэффициент полезного действия, равный отношению среднего эффективного давления к среднему индикаторному, оценивает механические потери в двигателе:

Механический к. п. д. можно выразить и через мощности двигателя:

Таким образом, механический к. п. д. показывает в долях единицы или в процентах ту часть индикатор­ной мощности, которая передается на фланец коленчатого вала.

Анализ механических потерь в двигателе, выполненный нами ранее, позволяет сделать заключение, что значение механического к. п. д. двига­теля зависит: от степени быстроходности двигателя, от величины давления газов цикла и динамики его изменения, от качества изготовления и сборки деталей двигателя, от качества смазочного масла, от теплового состояния двигателя и режима загрузки его, от мощности навешенных вспомогатель­ных механизмов и от сопротивлений во впускной и выпускной системах двигателя.

Читать еще:  Двигатель b20b расход топлива

При прочих равных условиях механический к. п. д. двигателя является функцией отношения среднего эффективного давления к максимальному давлению цикла; чем больше это отношение, тем выше механический к. п. д.

При уменьшении нагрузки на двигатель (сохраняя при этом число оборотов вала неизменным) мощность механических потерь N mex примерно остается постоянной, а потому относительное ее значение возрастает и ме­ханический к. п. д. падает.

На рис. 105 приведены кривые изменения механического к. п. д. ? т при полной нагрузке (сплошные кривые) и при 30 % нагрузки (пунктирные кри­вые) двигателя с воспламенением от сжатия (кривая В; ? = 16) и двигателя с воспламенением от искры (кривая А; ? = 6). Данные кривые показывают, что при уменьшении нагрузки на двигатель при неизменном числе оборотов ? т значительно падает. Следует заметить, что при холостом ходе двигателя N e == 0) из формулы (139а)

Таким образом, режим работы холостого хода можно охарактеризовать как режим, при котором механический к. п. д. равен нулю.

При одном и том же р е (как это видно из рис. 105) с увеличением числа оборотов двигателя (скоростная характеристика) ? т падает, что объясняется более интенсивным относительным ростом мощности механических потерь N мех , чем эффективной мощности двигателя.

При работе двигателя с наддувом значение ? т изменяется в зависимо­сти от системы и степени наддува. Если двигатель переводится на работу с газотурбинным наддувом, то, как показывают опытные данные, мощность механических потерь N мех при этом остается неизменной. Обозначим отно­шение ? н = p ? н / p ? , (степень наддува), где р а — давление в цилиндре в начале сжатия без наддува, а р —с наддувом. Можно принять, что отношение N in / N i также равно ? н , где N in — индикаторная мощность двигателя с наддувом, а N i — без наддува.

Если двигатель имел до наддува механический к. п. д. т. ? m , то при газо­турбинном наддуве он будет иметь:

Полученная формула показывает, что с повышением степени наддува при газотурбинном наддуве механический к. п. д. двигателя возрастает.

В том случае, когда газотурбонагнетатель кинематически связан с валом самого двигателя, отношение ? К = N к / N i может быть больше, меньше или равно отношению ? T = N T / N i в зависимости от степени использования энергии отработавших газов двигателя. Здесь N к — мощность, потребляе­мая наддувочным компрессором, а N T —мощность, развиваемая турбиной.

В этом случае, т. е. когда газотурбонагнетатель связан кинематически : валом двигателя, условный механический к. п. д. будет равен

где ? т д —механический к. п. д. собственно двигателя.

При ? T > ? К разность (? Т — ? К ) называется положительным небалансом, а при ? т к (? к — ? Т ) называется отрицательным небалансом.

Судовые дизели имеют следующие значения механического к. п. д.

Механический коэффициент полезного действия двигателя. Механический кпд двигателя

Механический коэффициент полезного действия двигателя

Что называется механическим коэффициентом полезного действия двигателя?

Отношение эффективной мощности Ne к индикаторной Ni называется механическим коэффициентом полезного действия:

Механический КПД показывает, какая часть энергии, выделившейся в цилиндрах при сгорании топлива, расходуется на внутренние потери.

В каких пределах находится механический КПД?

Для карбюраторных двигателей механический КПД находится в пределах ηм = 0,70 — 0,85, для дизельных – ηм = 0,70 — 0,82.

Какое соотношение есть между эффективной мощностью, частотой вращения коленчатого вала и крутящим моментом двигателя?

Между эффективной мощностью Ne, частотой вращения коленчатого вала n и крутящим моментом Мкр существует такое соотношение:

Изменяется ли эффективная мощность и другие параметры двигателя?

Эффективная мощность двигателя, развиваемая им при работе, не остается постоянной, а изменяется в соответствии с изменением частоты вращения коленчатого вала. При увеличении частоты вращения мощность двигателя увеличивается до определенного предела, установленного для каждого двигателя. При дальнейшем увеличении частоты вращения коленчатого вала мощность двигателя уменьшается вследствие того, что цилиндры не успевают наполняться достаточным количеством горючей смеси или воздуха, а также из-за неполного сгорания топлива и увеличения потерь на трение в самом двигателе. Поэтому заводы-изготовители при указании максимальной мощности двигателя указывают частоту вращения коленчатого вала, которой она отвечает.

С изменением частоты вращения коленчатого вала двигателя, кроме мощности, соответственно изменяются крутящий момент Мкр и удельный эффективный расход топлива ge, определяемый по формуле:

где Gт – часовой расход топлива, кг/ч.

Для карбюраторных двигателей удельный эффективный расход топлива находится в пределах 300-325 г/кВт·ч, для дизельных – 217-238 г/кВт·ч. Зависимость всех этих показателей от частоты вращения коленчатого вала при работе двигателя с полной подачей топлива (дизельные) или при полностью открытой дроссельной заслонке (карбюраторные) показана в виде графика (рис.6), называемого внешней скоростной характеристикой двигателя.

Рис.6. Внешняя скоростная характеристика двигателя автомобиля ГАЗ-53А.

***Проверьте свои знания и ответьте на контрольные вопросы по теме «Мощность и экономичность поршневых двигателей внутреннего сгорания»

двигатель, механический коэффициент полезного действия двигателя

Смотрите также:

Механический КПД — Теория ДВС — Каталог статей

Индикаторная мощность, развиваемая тепловым двигателем, не может быть в полной мере реализована из-за потерь на преодоление трения и на привод вспомогательных механизмов, но, чтобы улучшить топливную экономичность двигателя, необходимо точно знать все эти потери. Для удобства их оценки введено понятие механического КПД ηm.

Механический КПДОтношение эффективной мощности двигателя к индикаторной.

Наиболее значительная часть потерь вызвана трением в цилиндре, меньшая – трением в хорошо смазываемых подшипниках и приводом необходимого для работы двигателя оборудования. Потери, связанные с поступлением воздуха в двигатель (насосные потери), весьма важны, так как они возрастают пропорционально квадрату частоты вращения двигателя.

Потери мощности, необходимые для привода оборудования, обеспечивающего работу двигателя, включают мощность на привод механизма газораспределения, масляного, водяного и топливного насосов, вентилятора системы охлаждения. При воздушном охлаждении вентилятор подачи воздуха является неотъемлемым элементом двигателя при его испытаниях на стенде, в то время как у двигателей жидкостного охлаждения при проведении испытаний вентилятор и радиатор часто отсутствуют, а для охлаждения используют воду из внешнего контура охлаждения. Если потребляемую мощность вентилятора двигателя жидкостного охлаждения не учитывать, то это дает заметное завышение его экономических и мощностных показателей по сравнению с двигателем воздушного охлаждения.

Другие потери на привод оборудования связаны с генератором, пневмокомпрессором, гидронасосами, необходимыми для освещения, обеспечения работы приборов, тормозной системы, рулевого управления автомобиля. При испытании двигателя на тормозном стенде следует точно определить, что считать дополнительным оборудованием и как его нагружать, поскольку это необходимо для объективного сопоставления характеристик разных двигателей. В частности, это относится к системе охлаждения масла, которое при движении автомобиля охлаждается обдувом масляного поддона воздухом, отсутствующим при испытаниях на тормозном стенде. При испытании на стенде двигателя без вентилятора не воспроизводятся условия обдува трубопроводов воздухом, что вызывает повышение температур во впускной трубе и ведет к уменьшению величины коэффициента наполнения и мощности двигателя.

Размещение воздушного фильтра и величина сопротивления выпускного трубопровода должны соответствовать реальным условиям работы двигателя в автомобиле. Эти важные особенности необходимо учитывать при сопоставлении характеристик различных двигателей или одного двигателя, предназначенного для применения в различных условиях, например, в легковом или грузовом автомобиле, тракторе или для привода стационарного генератора, компрессора и т. д.

Читать еще:  Что такое двигатель де2

При уменьшении нагрузки двигателя его механический КПД ухудшается, так как абсолютная величина большинства потерь не зависит от нагрузки. Наглядным примером служит работа двигателя без нагрузки, т. е. на холостом ходу, когда механический КПД равен нулю и вся индикаторная мощность двигателя расходуется на преодоление его потерь. При нагрузке двигателя на 50% или менее удельный расход топлива по сравнению с полной нагрузкой значительно возрастает, и поэтому использовать для привода двигатель, имеющий большую, чем это требуется, мощность, совершенно неэкономично.

Механический КПД двигателя зависит от типа используемого масла. Применение в зимнее время масел повышенной вязкости приводит к росту расхода топлива. Мощность двигателя при больших высотах над уровнем моря падает вследствие уменьшения давления атмосферы, однако его потери практически не меняются, вследствие чего удельный расход топлива возрастает аналогично тому, как это имеет место при частичной нагрузке двигателя.

Стоит заметить, что высокий механический КПД не является гарантией высокогоэффективного КПД двигателя.

Способ определения механического кпд двигателя внутреннего сгорания

Изобретение относится к двигателестроению и предназначено для определения механического КПД двигателя внутреннего сгорания. С целью упрощения и повышения точности и производительности при работе двигателя фиксируют положение органа управления подачей топлива и отключают P циклов со сгоранием из общего числа циклов M. Замеряют при этом установившуюся частоту вращения. По отношению P/M числа отключенных циклов со сгоранием к общему числу циклов определяют численное значение механического КПД двигателя, работающего на замеренной установившейся частоте вращения со всеми включенными циклами со сгоранием при фиксированном положении органа управления подачей топлива. 1 ил.

1″ÎCÓÄAPÑTÂÅHHb>É НСЧ1 >ТЕТ

Г>0 ИЗОБРЕТЕНИЯМ И ОТНРЦТИЯМ

1 (21) 4036773/25-06 (22) 17.03.86 (46) 23.06.90. Бюл, — 23 (71) Воронежский лесотехнический институт (72) А,Н.Филин, В.Н. Чертков и В.Е. Гондарь (53) 621.436.018.76(088.8) (56) Диагностика автотракторных двигателей/Под ред. Н.С. Ждановского.

Л.: Колос, 1977, с. 264. (54) СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКОГО

КПД ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ (57) Изобретение относится к двигателестроению и предназначено для определения механического КПД двигателя

Изобретение. относится к машиностроению, в частности двигателестроению, и предназначено для определения механического коэффициента полезного действия (КЩ) двигателя внутреннего сгорания.

Цель изобретения — упрощение и повышение точности и производительности способа, На чертеже приведена схема, иллюстрирующая предлагаемый способ, При произвольной начальной частоте вращения холостого хода двигателя (точка 1, в которой механический КПД равен нулю) отключаются P циклов со сгоранием из общего числа циклов m при. фиксированном положении органа управления подачей топлива. Частота вращения при этом изменится (точка 2, см. схему).

ÄÄSUÄÄ 1573355 А 1 ц ) G 01 L 3/26 С 01 М 15/00

2 внутреннего сгорания. С целью упрощения и повышения точности и производительности при работе двигателя фиксируют положение органа управления подачей топлива и отключают P циклов со сгоранием иэ общего числа циклов ш.

Замеряют при этом установившуюся частоту вращения. По отношению Р/ш числа отключенных циклов со сгоранием к общему числу циклов определяют численное значение механического КПД двигателя, работающего на замеренной установившейся частоте вращения со всеми включеннь,ми циклами со сгоранием при фиксированном положении органа управления подачей топлива. 1 ил.

На установившемся скоростном режиме производят замер частоты вращения двигателя. При этом механический КПД двигателя, работающего с отключением

P циклов о сгоранием при фиксированном положении органа управления подачей топлива, также равен нулю (точка 2).

Механический КПП двигателя íà установившейся (в данном случае замереной 1 частоте вращения при его работе со всеми включенными циклами. со сгоранием при фиксированном положении органа управления подачей топлива равен где N N . — соответственно условная м мощность механических по1573355 терь и индикаторная мощность двигателя, Известно, что при работе двигателя на холостом ходу вся развиваемая им индикаторная мощность расходуется

5 на механические потери. При работе двигателя на холостом ходу с P отключенными циклами со сгоранием из общего числа ш циклов (включенных и отключенных) его индикаторная мощность (2) где (m-p) — число включенных циклов со сгоранием, 15

Полагая, что условные мощности механических потерь при установившейся частоте вращения двигателя с отключенными и включенными циклами со сгоранием pBBHbI (вследствие тепловой инерции сопряженных деталей сохраняются условия работы, близкие к .условиям при постоянной подаче топпива в цилиндр), имеем

N =N, или N = — N.. .(3)25

Решая уравнения (1) и (3) получаем

Следовательно, на замеренной установившейся частоте вращения (точка 2) 3

Р отношение — является механическим ш

КПД двигателя, работающего со всеми включенными циклами со сгоранием при фиксированном положении органа управления подачей топлива (точка 3).

На практике целесообразно задавать

Р отношение — в диапазоне предполаш гаемого изменения механического KIIg двигателя при данном положении оргahа управления подачей топлива.

Способ позволяет уменьшить время испытаний, так как производят только замер установившейся частоты враще.ния. Он прост в осуществлении, не требует установления перед каждым измерением определенной, заданной частоты вращения двигателя и поэтому более производителен.

В результате отключения циклов со сгоранием в отдельных цилиндрах поочередно обеспечивается сохранение тепловой напряженности всех цилиндров, отсутствие резких изменений температур деталей цилиндропоршневой группы при включении и отключении циклов со сгоранием, что приближает работу двигателя к реальным условиям, снижая погрешность определения механического КПД.

Пример. Пусть четырехцигиндровый двигатель при произвольном начальном положении органа управления подачей топлива имеет начальную час-, тоту вращения холостого хода и об/мин (точка 1). Эта частота врак щения не замеряется, но для поясненения допустим, что п„=2000 об/мин, После отключения P циклов со сгоранием по заданному отношению Р/m, равному, например, 7/10, двигатель уменьшает частоту вращения и при фиксиро-. ванном положении органа управления подачей -топлива его установившаяся частота вращения холостого хода составляет и р1500 об/мин. Значит, при частоте вращения и =1500 o6/ìHí (точ3 ка 3) и фиксированном положении органа управления подачей топлива меХанический КПД двигателя равен Р/m=7/10=

=0,7, что подтверждается следующим.

На замеренной частоте вращения п =1500 об/мин при фиксированном по3 ложении органа управления подачей топлива и Р/ш=7/10 из каждых 10 циклов отключаются периодически 7 циклов и в цилиндрах периодически совершается (m-P)=3 цикла со сгоранием.

Следовательно, на замеренной частоте вращения холостого хода при. фиксированном положении органа управления подачей топлива и Р/ш=7/10 инди-. каторная мощность двигателя равна (m-Р) 3 — N -=(†)N и расходуется полш 1 10 ностью на механические потери, т.е .

На этой же частоте вращения n. =

=-1500 об/мин при всех работающих ци- линдрах, т.е. при работе двигателя без отключения циклов со сгоранием и фиксированном положении органа управления подачей топлива, его индикаторная мощность составит N; а условная мощность механических потерь останется прежней, т.е. N =3/10-N,, так как частота вращения не изменяется и равна и =1500 об/мин. Тогда двигатель разовьет некоторую эффек1573355 6

3/10N. Формула изобретения!

КПД б, Способ определения механического

КПД двигателя внутреннего сгорания заключающийся в том, что периодичес-, 5 ки отключают цилиндры на определенное число циклов через определенные,, заранее выбранные промежутки времени при безмоторных испытаниях двигателя на режиме холостого хода, замеряют частоты вращения и по результатам замера судят КПД, о т л и ч а юшийся тем, что, с целью упрощения процесса определения, повышения точности и производительности, цилиндры отключают при фиксированном поло-. жении органа управления подачей топлива, замеряют установившуюся частоту вращения двигателя, а о величине механического КПД двигателя, работающего на замеренной установившейся частоте со всеми включенными цилиндрами, судят по отношению числа циклов с отключенными цилиндрами к общему числу циклов во всех цилиндрах. тивную мощность N =N -N =N— е м i

Читать еще:  Citroen jumper характеристики двигателя

=7/10 N; и его механический дет равен — — =7/10=

В рассмотренном примере механический КПД !1 =0,7 двигатель имеет на замеренной частоте вращения и =

=1500 об/мин и при развиваемой на 2р этой частоте без отключения циклов со сгоранием эффективной мощности, соответствующей фиксированному положению органа управления подачей топлива. 25

Составитель В. Горбунов

Редактор С. Патрушева Техред М.Дидык Корректор О. Ципле

Заказ 1638 Тираж 473 Подписное

BHHHIIH Государственного комитета по изобретениям и открытиям при ГКНТ СССР

1!3035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат «Патент», г.Ужгород, ул. Гагарина, 101

Что такое механический кпд двигателя

Каких-либо особых условий в плане энергосбережения, отличающих временное или постоянное загородное жилье от многоквартирного городского нет. Из бытовых приборов многие дачники и жители небольших деревень запасаются электрохлебопечками и электроприборами для очистки воды. В таких домах, как правило, существенно больше используются лампы для освещения – не только внутри дома, но и во дворе, а также на приусадебном участке (см. раздел «Энергоэффективность в комнате»). Часто используется электрический рабочий инструмент: насосы, триммеры, электрорубанки, электропилы, шредеры и т.п. В них основным рабочим элементом является электродвигатель. И вопрос энергоэффективности во многом упирается в вопрос энергоэффективности работы двигателя. Грамотно выбрать рабочий инструмент с энергоэффективным двигателем можно, обращая внимание на некоторые моменты.

В процессе эксплуатации двигателя значительные потери энергии наблюдаются в переходных режимах и в первую очередь при его пуске.

Потери энергии в переходных режимах могут быть заметно снижены за счет применения двигателей с меньшими значениями моментов инерции ротора, что достигается уменьшением диаметра ротора при одновременном увеличении его длины, так как мощность двигателя при этом должна оставаться неизменной.

Эффективным средством снижения потерь при пуске двигателей является пуск при постепенном повышении напряжения, подводимого к обмотке статора. Энергия, расходуемая при торможении двигателя, равна кинетической энергии, запасенной в движущихся частях электропривода при его пуске. Энергосберегающий эффект при торможении зависит от способа торможения. Наибольший энергосберегающий эффект происходит при генераторном рекуперативном торможении с отдачей энергии в сеть. При динамическом торможении двигатель отключается от сети, запасенная энергия рассеивается в двигателе и расхода энергии из сети не происходит.

Наибольшие потери энергии наблюдаются при торможении противовключением, когда расход электроэнергии равен трехкратному значению энергии, рассеиваемой в двигателе при динамическом торможении. При установившемся режиме работы двигателя с номинальной нагрузкой потери энергии определяются номинальным значением КПД. Но если электропривод работает с переменной нагрузкой, то в периоды спада нагрузки КПД двигателя понижается, что ведет к росту потерь. Эффективным средством энергосбережения в этом случае является снижение напряжения, подводимого к двигателю в периоды его работы с недогрузкой. Этот способ энергосбережения возможно реализовать при работе двигателя в системе срегулируемым преобразователем при наличии в нем обратной связи по току нагрузки. Сигнал обратной связи по току корректирует сигнал управления преобразователем, вызывая уменьшение напряжения, подводимого к двигателю в периоды снижения нагрузки.

Если же приводным является асинхронный двигатель, работающий при соединении обмоток статора «треугольником», то снижение подводимого к фазным обмоткам напряжения можно легко реализовать путем переключения этих обмоток на соединение «звездой», так как в этом случае фазное напряжение понижается в 1,73 раза. Этот метод целесообразен еще и потому, что при таком переключении повышается коэффициент мощности двигателя, что также способствует энергосбережению.

Выбор двигателя завышенной номинальной мощности ведет к снижению его технико-экономических показателей (КПД и коэффициента мощности), вызванных недогрузкой двигателя. Такое решение при выборе двигателя ведет как к росту капитальных вложений (с ростом мощности увеличивается стоимость двигателя), так и эксплуатационных расходов, поскольку с уменьшением КПД и коэффициента мощности растут потери, а, следовательно, растет непроизводительный расход электроэнергии. Применение двигателей заниженной номинальной мощности вызывает их перегрузку при эксплуатации. Вследствие этого растет температура перегрева обмоток, что способствует росту потерь и вызывает сокращение срока службы двигателя. В конечном счете возникают аварии и непредвиденные остановки электропривода и, следовательно, растут эксплуатационные расходы. В наибольшей степени это относится к двигателям постоянного тока из-за наличия у них щеточно-коллекторного узла, чувствительного к перегрузке.

Большое значение имеет рациональный выбор пускорегулирующей аппаратуры. С одной стороны, желательно, чтобы процессы пуска, торможения реверса и регулирования частоты вращения не сопровождались значительными потерями электроэнергии, так как это ведет к удорожанию эксплуатации электропривода. Но, с другой стороны, желательно, чтобы стоимость пускорегулирующих устройств не была бы чрезвычайно высокой, что привело бы к росту капитальных вложений. Обычно эти требования находятся в противоречии. Например, применение тиристорных пускорегулирующих устройств обеспечивает наиболее экономичное протекание процессов пуска и регулирования двигателя, но стоимость этих устройств пока еще остается достаточно высокой. Поэтому при решении вопроса целесообразности применения тиристорных устройств следует обратиться к графику работы проектируемого электропривода. Если электропривод не подвержен значительным регулировкам частоты вращения, частым пускам, реверсам и т.п., то повышенные затраты на тиристорное либо другое дорогостоящее оборудование могут оказаться неоправданными, а расходы, связанные с потерями энергии, — незначительными. И наоборот, при интенсивной эксплуатации электропривода в переходных режимах применение электронных пускорегулирующих устройств становится целесообразным. К тому же следует иметь в виду, что эти устройства практически не нуждаются в уходе и их технико-экономические показатели, включая надежность, достаточно высоки. Необходимо, чтобы решение по применению дорогостоящих устройств электропривода подтверждалось технико-экономическими расчетами.

Решению проблемы энергосбережения способствует применение синхронных двигателей, создающих в питающей сети реактивные токи, опережающие по фазе напряжение. В итоге сеть разгружается от реактивной (индуктивной) составляющей тока, повышается коэффициент мощности на данном участке сети, что ведет к уменьшению тока в этой сети и, как следствие, к энергосбережению. Эти же цели преследует включение в сеть синхронных компенсаторов. Примером целесообразного применения синхронных двигателей является электропривод компрессорных установок, снабжающих предприятие сжатым воздухом. Для этого электропривода характерен пуск при небольшой нагрузке на валу, продолжительный режим работы при стабильной нагрузке, отсутствие торможений и реверсов. Такой режим работы вполне соответствует свойствам синхронных двигателей.

Используя в синхронном двигателе режим перевозбуждения, можно достичь значительного энергосбережения в масштабе всего предприятия. С аналогичной целью применяют силовые конденсаторные установки («косинусные» конденсаторы). Создавая в сети ток, опережающий по фазе напряжение, эти установки частично компенсируют индуктивные (отстающие по фазе) токи, что ведет к повышению коэффициента мощности сети, а следовательно, к энергосбережению.

Насосы

Среди основных причин неэффективной эксплуатации насосного оборудования можно выделить две основные:

1. Переразмеривание насосов, т.е. установка насосов с параметрами подачи и напора большими, чем требуется для обеспечения работы насосной системы.

2. Регулирование режима работы насоса при помощи задвижек. Потребители довольно часто выбирают насос с запасом по напору, полагая, что это гарантирует работу насоса при любых условиях. В этом случае рабочая точка смещается в правую зону и выходит за пределы рабочего диапазона, что приводит к увеличению потребляемой мощности, падению КПД перегрузке электродвигателя, а также ряду проблем механического характера, что значительно повышает риск поломки агрегата.

Меры по снижению энергопотребления и их потенциальный размер

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]