Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое мощность двигателя насоса

Что такое мощность двигателя насоса

Методика расчета мощности электродвигателя при неизменяющейся нагрузке.

Существует много механизмов, работающих продолжительно с неизменной или мало меняющейся нагрузкой без регулирования скорости, например насосы, компрессоры, вентиляторы и т.п.

При выборе электродвигателя для такого режима необходимо знать мощность, потребляемую механизмом. Если эта мощность неизвестна, ее определяют теоретическими расчетами или расчетами по эмпирическим формулам с использованием коэффициентов, полученных из многочисленных опытов. Для малоизученных механизмов необходимую мощность определяют путем снятия нагрузочных диаграмм самопишущими приборами на имеющихся уже в эксплуатации аналогичных установках либо путем использования нормативов потребления энергии, полученных на основании статистических данных, учитывающих удельный расход электроэнергии при выпуске продукции.

При известной мощности механизма мощность электродвигателя выбирается по каталогу с учетом КПД промежуточной передачи. Расчетная мощность на валу электродвигателя:

Номинальная мощность электродвигателя, принятого по каталогу, должна быть равна или несколько больше расчетной.

Выбранный электродвигатель не нуждается в проверке по нагреву или по перегрузке, так как завод-изготовитель произвел все расчеты и испытания, причем основанием для расчетов являлось максимальное использование материалов, заложенных в электродвигателе при его номинальной мощности. Иногда, однако, приходится проверять достаточность пускового момента, развиваемого электродвигателем, учитывая, что некоторые механизмы имеют повышенное сопротивление трения в начале трогания с места (например, транспортеры, некоторые механизмы металлорежущих станков).

Подставив необходимые значения, Вы можете рассчитать мощность прямо сейчас

где — коэффициент запаса, принимаемый 1,1-1,3 в зависимости от мощности электродвигателя; — ускорение свободного падения; — подача (производительность) насоса, м³/с; — расчетная высота подъёма, м; — плотность перекачиваемой жидкости, кг/м³; — КПД насоса (для поршневого 0,7-0,9; для центробежного с давлением свыше 0,4×10 5 Па 0,6-0,75, с давлением до 0,4×10 5 Па 0,45-0,6); — КПД передачи, равный 0,9-0,95; — давление, развиваемое насосом, Па.

Для центробежного насоса особенно важен правильный выбор частоты вращения электродвигателя, так как производительность насоса Q, расчетная высота H, момент М и мощность Р на валу электродвигателя зависят от угловой скорости W. Для одного и того же насоса значения Q1, H1, M1, P1 при W1 связаны со значениями Q2, H2, M2, P2 при скорости W2 соотношениями Q1/Q2=W1/ W2; H1/H2=M1/M2=W 2 1/ W 2 2; P1/ P2=W 3 1/ W 3 2.

Из этих соотношений следует, что при завышении угловой скорости электродвигателя потребляемая им мощность резко возрастает, что приводит к перегреву его и выходу из строя. При заниженной скорости создаваемый насосом напор может оказаться недостаточным, и насос не будет перекачивать жидкость.

где — подача (производительность) компрессора, м³/с; — работа изотермического и адиабатического сжатия 1 м³ атмосферного воздуха давлением p1=1,1×10 5 Па до требуемого давления p2, Дж/м³; для давлений до 10×10 5 Па значения A следующие:

p2, 10 5 Па345678910
A, 10 -3 Дж/м³132164190213230245260272

— индикаторный КПД компрессора, равный 0,6-0,8; — КПД передачи, равный 0,9-0,95; — коэффициент запаса, равный 1,05-1,15.

Определив мощность поршневого компрессора, Вы можете подобрать электродвигателю соответствующие частотные преобразователи СТА.

где — производительность вентилятора, м³/с; — давление на выходе вентилятора, Па; — КПД вентилятора, равный 0,5-0,85 для осевых, 0,4-0,7 — для центробежных вентиляторов; — КПД передачи; — коэффициент запаса, равный 1,1-1,2 при мощности более 5 кВт, 1,5 — при мощности до 2 кВт и 2,0 — при мощности до 1 кВт.

По этой формуле также определяется мощность электродвигателя для центробежного вентилятора.

Эксплуатационные свойства механизмов центробежного типа (насосов, компрессоров и вентиляторов) определяются зависимостью напора (давление жидкости или газа на выходе механизма) от производительности при различных угловых скоростях механизма. Эти зависимости, называемые Q — H характеристиками, обычно приводятся в виде графиков в каталогах для каждого конкретного механизма.

Мощность

Мощность
P, N
РазмерностьL 2 MT −3
Единицы измерения
СИВт
СГСэрг·с −1

Мо́щность — скалярная физическая величина, характеризующая мгновенную скорость передачи энергии от одной физической системы к другой в процессе её использования и в общем случае определяемая через соотношение переданной энергии к времени передачи. В системе СИ единицей измерения мощности является ватт, равный энергии в 1 джоуль, переданной за время в 1 секунду (1 Вт ≡ 1 Дж/с), а любое числовое значение мощности, указываемое в каких-либо информационных источниках, по умолчанию подразумевает именно такой секундный временной промежуток. [1] [2]

Содержание

  • 1 Используемые обозначения
  • 2 Основные формулы
  • 3 Единицы измерения
  • 4 Мощность в механике
  • 5 Электрическая мощность
    • 5.1 Приборы для измерения электрической мощности и мощности излучения
  • 6 Гидравлическая мощность
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Используемые обозначения [ править | править код ]

Актуальные международные стандарты серии ISO/IEC 80000 предписывают обозначать мощность символом P прописной буквой как для формул механики, так и для формул электродинамики. [3] [4] Этимология обозначения — либо от лат. potestas , либо от англ. power .

В русскоязычной литературе по физике мощность в формулах механики и гидродинамики может обозначаться символом N, но этимология данного обозначения точно не ясна.

Основные формулы [ править | править код ]

Основное определение мощности:

P = d E d t

>> (где P — мощность, E — энергия, t — время).

Определение среднего значения мощности за промежуток времени Δ t :

P = Δ E Δ t , >,>

Интеграл по времени от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:

∫ t 0 t 1 P d t = E . >^>Pdt=E.>

Единицы измерения [ править | править код ]

В Международной системе единиц (СИ) единицей измерения мощности является ватт (Вт), равный одному джоулю в секунду (Дж/с). [5]

В теоретической физике, астрофизике, в качестве единицы для мощности часто используют эрг в секунду (эрг/с), являющуюся внесистемной.

Распространённой единицей измерения мощности автомобильных, локомотивных и судовых ДВС является лошадиная сила. Однако в своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, «которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются» [6] .

Читать еще:  Электро схема подключения двигателя вентилятора

Соотношения между единицами мощности

ЕдиницыВткВтМВткгс·м/сэрг/сл. с.(мет.)л. с.(анг.)
1 ватт110 −310 −60,10210 71,36⋅10 −31,34⋅10 −3
1 киловатт10 3110 −310210 101,361,34
1 мегаватт10 610 31102⋅10 310 131,36⋅10 31,34⋅10 3
1 килограмм-сила-метр в секунду9,819,81⋅10 −39,81⋅10 −619,81⋅10 71,33⋅10 −21,31⋅10 −2
1 эрг в секунду10 −710 −1010 −131,02⋅10 −811,36⋅10 −101,34⋅10 −10
1 лошадиная сила (метрическая)735,5735,5⋅10 −3735,5⋅10 −6757,355⋅10 910,9863
1 лошадиная сила (английская)745,7745,7⋅10 −3745,7⋅10 −676,047,457⋅10 91,0141

Мощность в механике [ править | править код ]

Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

N = F ⋅ v = F ⋅ v ⋅ cos ⁡ α , cdot mathbf =Fcdot vcdot cos alpha ,>

где F > — вектор силы; v > — вектор скорости; α — угол между вектором скорости и силы; F — модуль вектора силы; v — модуль вектора скорости.

Частный случай мощности при вращательном движении:

N = M ⋅ ω = 2 π ⋅ M ⋅ n 60 , cdot mathbf = cdot mathbf ><60>>,>

где M > — момент силы; ω > — угловая скорость; n — частота вращения (число оборотов в минуту, об/мин).

Электрическая мощность [ править | править код ]

Электри́ческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность P ( t ) участка электрической цепи:

P ( t ) = I ( t ) ⋅ U ( t ) где I ( t ) — мгновенный ток через участок цепи; U ( t ) — мгновенное напряжение на этом участке.

При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия:

  • активной мощности, равной среднему за период значению мгновенной мощности,
    • мгновенная активная мощность:

p ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ − 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ cos ⁡ ( 2 ω t ) . cdot U_cdot I_cdot cos varphi —<1 over 2>cdot U_cdot I_cdot cos varphi cos(2omega t).>

  • реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно,
    • мгновенная реактивная мощность:

при 0<:>>»> φ > 0 : <:>><:>>»/> q ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ sin ⁡ φ ⋅ cos ⁡ ( 2 ω t + π 2 ) , <2>>cdot U_cdot I_cdot sin varphi cdot cos 2omega t+<2>>,>при φ 0 : q ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ sin ⁡ φ ⋅ cos ⁡ ( 2 ω t − π 2 ) . <2>>cdot U_cdot I_cdot sin varphi cdot cos 2omega t-<2>>.>

  • полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.
    • мгновенная полная мощность:

s ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ − 1 2 ⋅ U m ⋅ I m ⋅ c o s ( 2 ω t − φ ) , cdot U_cdot I_cdot cos varphi —<1 over 2>cdot U_cdot I_cdot cos2omega t-varphi ,>где I m >— амплитуда тока; U m >— амплитуда напряжения; φ — угол между начальным углом напряжения ψ u >и начальным углом силы тока ψ i >— ( φ = ψ u − ψ i ) ; -psi _)<;>>ω — угловая скорость; t — время.

Приборы для измерения электрической мощности и мощности излучения [ править | править код ]

  • Ваттметры (в том числе варметры) — измерительные приборы, предназначенные для определения мощности электрического тока или электромагнитного излучения.

По назначению и диапазону частот ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические.

Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и её вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Гидравлическая мощность [ править | править код ]

Мощность гидромашины или гидроцилиндра равна произведению перепада давления на машине (разности давлений на входе и выходе) на расход жидкости:

N H = Q H ⋅ P H , =Q_cdot P_,> где Q H > — расход жидкости, м 3 /с; P H > — перепад давления, Па.

К примеру, насос НП-89Д, стоящий на Су-24, Ту-134 и Ту-154, имеет производительность 55 л/мин (

0,000917 м 3 /с) при давлении 210 кгс/см 2 (21 МПа) [7] — следовательно, его гидравлическая мощность составляет примерно 19,25 кВт.

Мощность насоса

Мощность является одной из основных характеристик насоса. В настоящее время под термином «водяной насос» понимается специальное устройство, служащее для перемещения перекачиваемой среды (твердых, жидких и газообразных веществ).

В отличие от водоподъемных механизмов, которые тоже предназначены для перемещения воды, насосный агрегат увеличивает давление или кинетическую энергию перекачиваемой жидкости.

Содержание статьи

Напор и мощность насоса

Мощность — работа, которую совершает агрегат в единицу времени.

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Формула мощности на валу насоса:

Nв =Nп / η = yQH / η

где η — коэффициент полезного действия (КПД насоса)

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД насоса – коэффициент полезного действия – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

Формула кпд насоса выглядит так:

ηо — объемный КПД насоса – характеризует объемные потери

ηг — гидравлический КПД – характеризует гидравлические потери

ηм — механический КПД – характеризует механические потери

Расчет КПД насоса показывает возможные потери:

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части — в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД центробежного насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Расчет мощности или сколько потребляет насос

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление. Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).
для домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
для домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
если 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P,
где Q — расход теплоносителя через котел, л/мин;
Р — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования, Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

Видео по теме

Подбор необходимого насоса осуществляется по каталогу. Из выбранных насосов предпочтения отдаются тем, которые потребляют меньшую мощность и обладают более высоким КПД. Ведь показатели мощности и КПД в дальнейшем определяют затраты на электроэнергию при эксплуатации оборудования.

Как мощность электродвигателя влияет на характеристики насоса (Техническая суть одного разбирательства)

Введение

В статье приведена техническая составляющая одного спора между поставщиком и покупателем электродвигателей, аспекты которого могут быть полезны нашим читателям, а именно разберемся как мощность электродвигателя влияет на характеристики насоса.

Ситуация развивалась так. Компания А приобрела у компании Б электродвигатель 75 квт 3000 об/мин для насоса Д320-70.

Однако при эксплуатации агрегата что-то пошло не так и компания А обратилась к поставщику забрать электромотор обратно и вернуть деньги.

Техническое обоснование в претензии выглядело так (изложение и стилистика сохранены согласно оригинала):

«При получении электродвигателя был проведен визуальный осмотр, габаритные замеры и инструментальная проверка целостности обмоток (тестовое «прозванивание») которые, кроме резкого запаха лака (что свидетельствует о недавнем ремонте электрообмоток), не давали сомнений относительно работоспособности покупаемого оборудования, после чего он был доставлен на территорию предприятия.

Однако в процессе монтажа обнаружилось следующее:

— Стабильная работа приобретенного электродвигателя при тестовом (холостом) запуске без присоединения до насоса Д320-70;

— Удовлетворительная работа приобретенного электромотора при тестовом (холостом) запуске в смонтированном комплекте с насосом Д320-70;

— Нестабильная под напряжением работа электромотора при рабочем запуске откачивания карьерной воды, которая характеризовалась отсутствием «рабочего» напора откачиваемых вод (не более 20% от потребности) что вызвало сомнения в соответствии производственной мощности приобретенного оборудования (оборудование предприятия при аналогичных характеристиках работало на 100%);

— Выход из строя главного вала насоса Д320-70 из-за возможной причины недостаточной мощности электродвигателя.

Компания-поставщик обратилась к нам прокомментировать данную претензию с технической стороны. Ниже приводим некоторые наши рассуждения.

Ми не комментировали последний пункт технической части претензии. Он выходит за пределы нашего понимания. Ибо нам абсолютно не понятно каким образом электродвигатель недостаточной мощности может вывести из строя вал насоса, расчитаный на нагрузку от электродвигателя большей мощности.

Можно ли определить мощность электродвигателя по характеристикам насоса, где он установлен

Убежденность, что электродвигатель не выдает заявленной мощности компания А основывает на том, что не работает оборудование, на которое установлен этот мотор.

По сути в претензию заложено утверждение: «мощность электродвигателя можно определить косвенно по характеристикам оборудования, к которому этот электродвигатель подключен». Однако это утверждение ошибочное, что мы покажем ниже.

В претензии покупатель пишет, что: «нестабильная под напряжением работа электродвигателя», «отсутствие рабочего напора» и так далее.

Как по мне, с технической точки зрения непонятно понятие «нестабильная». В технике все должно быть четко. «Нестабильность» в чем то измеряеться или как-то определяется. Но это пока не важно.

Важно то, что по сути поставщик не имеет никакого отношения к тому, куда покупатель поставил электромотор. Для этого у покупателя должен быть соответствующий технический персонал, отвечающий за правильный подбор, надлежащий монтаж и грамотную эксплуатацию оборудования.

Важно то, что в данном случае технический персонал покупателя не рассмотрел другие причины, которые не имеют отношения к электромотору, но они могут изменять характеристики работы насоса.

Факторы, которые влияют на характеристики насоса

Ниже приводим ряд факторов, влияющих на характеристики насоса.
Например:

  • рабочее колесо насоса вращается в противоположном направлении. Это приведет к значительному снижению характеристик насоса: напора и производительности;
  • неисправность самого насоса: износ или повреждение рабочего колеса, например вследствие попадания посторонних предметов в насос. А попадание посторонних предметов может повредить вал насоса (о чем покупатель, кстати, написал в претензии);
  • неисправность в трубопроводах, подсос воздуха на всасывающем трубопроводе, неисправность трубопроводной арматуры.

Следовательно, утверждение, что только электродвигатель является причиной неудовлетворительной работы насосного агрегата, по сути ошибочно. Не учтены другие факторы, влияющие на работу насоса.

Мощность 3-х фазного электродвигателя рассчитывается по формуле: Р = 1,78 * U * I * КПД * соs ф
где U напряжение питающей сети, I — сила потребляемого тока. В этой формуле нет «напора откачиваемых вод».

Наш вывод: по характеристикам насоса невозможно однозначно определить мощность электродвигателя, подключенного к нему.

Как мощность электродвигателя влияет на характеристики насоса

Рабочий орган центробежного насоса — его рабочее колесо, которое при вращении захватывает жидкость из входного трубопровода и выталкивает в выходной. Характеристики насоса зависят от размеров этого рабочего колеса и скорости его вращения.

Если на насос Д320-70 поставить мотор 75 кВт 3000 об/мин или 200 кВт 3000 об/мин при одинаковых размерах рабочего колеса — то характеристики у насоса будут одинаковы в обоих случаях.

Это потому что оба электромотора вращають рабочее колесо насосов почти 3000 оборотов в минуту. Но 75 кВт электромотор нагружен, к примеру, на 95%, а 200 кВт — всего на 50%.

Можно даже установить на насос мотор 55 кВт 3000 об/мин — и насос тоже не поменяет характеристики. Однако мотор 55 кВт будет нагружен, например, на 120%, то есть он будет перегружен и быстро выйдет из строя.

Наш вывод: На готовом насосе (при неизменных геометрических характеристиках и частоте вращения рабочего колеса) изменение мощности электродвигателя не будет менять напор и расход насоса. Влияние имеет только частота вращения рабочего органа насоса — его рабочего колеса.

При определении характеристик насоса полезными могут оказаться закономерности, связанные с частотой вращения вала установленного на насос электродвигателя:

1) Подача насоса пропорциональна частоте вращения рабочего колеса. Удвоение частоты вращения в два раза увеличивает подачу в два раза.

2) Напор насоса пропорционален квадрату частоты вращения рабочего колеса. Удвоение частоты вращения увеличивает напор в 4 раза.

3) Потребляемая мощность пропорциональна частоте вращения рабочего колеса в третьей степени. Удвоение частоты вращения рабочего колеса увеличивает потребляемую мощность в 8 раз.

Ссылка на основную публикацию
Adblock
detector