Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СПОСОБ ВОСПЛАМЕНЕНИЯ ТОПЛИВНОЙ СМЕСИ В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ ЛАЗЕРНЫМ ОПТИЧЕСКИМ РАЗРЯДОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

СПОСОБ ВОСПЛАМЕНЕНИЯ ТОПЛИВНОЙ СМЕСИ В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ ЛАЗЕРНЫМ ОПТИЧЕСКИМ РАЗРЯДОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к автомобилестроению, а конкретно к системам воспламенения топливовоздушной смеси (ТВС) в двигателях внутреннего сгорания (ДВС). Сущность способа заключается в следующем. Воспламенение ТВС в ДВС достигается с помощью лазерного оптического разряда, для его интенсификации лазерный луч концентрируют на металлическую поверхность поршня двигателя. Устройство для осуществления способа содержит лазер (4) с оптическим световодом (5) и с фокусирующей линзой (8). Блок синхронизации (2) связан с усилителем мощности накачки (3) лазера (4) и с датчиком (1) положения распределительного вала двигателя. Фокусирующая линза (8) в верхней части через световод (5) соединена с лазером (4), а со стороны цилиндра двигателя (11) имеет упорную втулку (9), к которой прикреплено окно из кварцевого стекла, отделяющее оптическую систему от продуктов сгорания в цилиндре двигателя (11). Усилитель мощности (3) накачки лазера (4) представляет собой пакет конденсаторов, связанный с аккумуляторной батареей. Технический результат — упрощение системы зажигания за счет использования одного лазера, повышение надежности зажигания ТВС при высоких давлениях, за счет чего достигается экономическая эффективность и, следовательно, доступность использовании лазерной системы зажигания в ДВС. 2 н. и 4 з.п. ф-лы, 2 ил.

1. Способ воспламенения топливной смеси в двигателе внутреннего сгорания лазерным оптическим разрядом, включающий нагрев и воспламенение горючей смеси, путем подачи энергетического импульса от лазерного источника, отличающийся тем, что фокусирование лазерного луча, инициирующего оптический разряд, производят на поверхность поршня двигателя. 2. Способ по п.1, отличающийся тем, что положение оптического разряда на поверхности поршня при его движении к верхней мертвой точке регулируют в зависимости от состава горючей смеси и оборотов двигателя путем изменения момента подачи энергетического импульса на лазер. 3. Способ по п.1, отличающийся тем, что энергетический импульс на лазерный источник подают по сигналу датчика на распределительном вале двигателя. 4. Устройство для осуществления способа, содержащее лазер, оптический световод, фокусирующую линзу, блок синхронизации, связанный с усилителем мощности накачки лазера, отличающееся тем, что блок синхронизации связан с датчиком положения распределительного вала двигателя. 5. Устройство по п.4, отличающееся тем, что фокусирующая линза в верхней части через световод соединена с лазером, а со стороны цилиндра двигателя имеет упорную втулку с защитным окном, отделяющим оптическую систему от продуктов сгорания цилиндра двигателя. 6. Устройство по п.4, отличающееся тем, что усилитель мощности представляет собой пакет конденсаторов, связанный с аккумуляторной батареей.

Изобретение относится к автомобилестроению, а конкретно к системам воспламенения топливовоздушной смеси (ТВС) в двигателях внутреннего сгорания (ДВС).

Известен способ воспламенения ТВС электрическим разрядом высокого напряжения (12-24 кВ), имеющим температуру около 10300 К между электродами свечи, напряжение на которые подается в результате преобразования постоянного тока в переменный импульсный ток, а затем трансформация его в импульсный ток высокого напряжения (Тур Е.Я. и др. Устройство автомобиля. М., Машиностроение, 1991, стр.154-156). Однако в известном способе не обеспечивается достаточное напряжение во вторичной цепи (после трансформации, особенно при увеличении частоты вращения, степени сжатия и числа цилиндров двигателя); быстро изнашиваются контакты прерывателя, вследствие чего снижается надежность работы и, как следствие, ухудшается экономичность двигателя; кроме того, затруднен пуск двигателя, так как для пуска двигателя напряжение во вторичной цепи должно быть больше, чем на прогретом двигателе (Тур Е.Я. и др. Устройство автомобиля. М., Машиностроение, 1991, стр.154-156).

Известен способ лазерного зажигания горючей смеси двигателя внутреннего сгорания и система для его осуществления (патент РФ №2309288, МПК F02P 23/04, опубл. 2003 г.). Способ лазерного зажигания горючей смеси двигателя внутреннего сгорания и система для его осуществления, являющийся наиболее близким к заявленному изобретению и принятый за прототип, заключающийся в том, что горючую смесь нагревают и поджигают энергией двух лазерных источников, при этом первым лазерным источником в горючей смеси создают локальный разогретый участок путем колебательного перемещения фокального пятна колебанием оптической системы, а вторым лазерным источником в момент зажигания горючей смеси подают энергетический импульс в центр разогретого объема горючей смеси. Устройство содержит блок синхронизации, связанный с усилителем мощности накачки лазера и собственно с самим лазером, причем блок синхронизации связан с датчиком положения коленчатого вала, а лазер связан с оптико-волоконной связью с фокусирующей линзой. В известном способе невозможно получить колебания оптической системы с частотой, на порядок превышающей обороты двигателя, необходимой для разогрева объема смеси; конструкция сложная и дорогая из-за необходимости использования энергии двух лазеров для зажигания горючей смеси и их синхронизации.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении надежности зажигания ТВС при высоких давлениях, в упрощении системы зажигания, в результате чего достигается экономическая эффективность при использовании лазерной системы зажигания.

Технический результат достигается тем, что в способе воспламенения топливной смеси в двигателе внутреннего сгорания лазерным оптическим разрядом, включающим нагрев и воспламенение горючей смеси путем подачи энергетического импульса от лазерного источника, новым является то, что фокусирование лазерного луча, инициирующего оптический разряд, производят на поверхность поршня двигателя.

Положение оптического разряда на поверхности поршня при его движении к верхней мертвой точке регулируют в зависимости от состава горючей смеси и оборотов двигателя путем изменения момента подачи энергетического импульса на лазер.

Энергетический импульс на лазерный источник подают по сигналу датчика на распределительном валу двигателя.

В устройстве для осуществления способа, содержащем лазер, оптический световод, фокусирующую линзу, блок синхронизации, связанный с усилителем мощности накачки лазера, новым является то, что блок синхронизации связан с датчиком положения распределительного вала двигателя.

Фокусирующая линза в верхней части через световод соединена с лазером, а со стороны цилиндра двигателя имеет упорную втулку с защитным окном, отделяющим оптическую систему от продуктов сгорания цилиндра двигателя.

Усилитель мощности представляет собой пакет конденсаторов, связанный с аккумуляторной батареей.

Сущность способа заключается в следующем. Воспламенение ТВС в ДВС достигается с помощью лазерного оптического разряда, который получают в результате фокусировки энергии лазера в очень маленьком объеме среды (точке), в которой происходит концентрация энергии лазера, причем чем меньше объем (точка) концентрации энергии, тем выше температура плазмы в ядре оптического разряда. Плазма в ядре оптического разряда зависит от энергии выхода электронов в среде оптического разряда, поэтому для интенсификации оптического разряда лазерный луч концентрируют на металлическую поверхность поршня двигателя.

Читать еще:  405 двигатель определение неисправностей

Оптический разряд, реализуемый на поршне ДВС, вызывает воспламенение ТВС, момент воспламенения которого зависит от состава ТВС и оборотов двигателя, для чего регулируют время опережения зажигания путем изменения момента подачи энергетического импульса на лазер.

На фиг.1 представлена общая схема способа воспламенения ТВС в двигателе внутреннего сгорания на основе оптического разряда.

На фиг.2 представлена оптическая схема системы воспламенения, где 1 — датчик положения распределительного вала; 2 — блок синхронизации; 3 — усилитель мощности накачки лазера; 4 — лазер; 5 — световод; 6 — поршень двигателя; 7 — окно; 8 — фокусирующая линза; 9 — втулка; 10 — корпус воспламенителя; 11 — цилиндр двигателя.

Устройство для осуществления способа содержит лазер 4 с оптическим световодом 5 и с фокусирующей линзой 8. Блок синхронизации 2 связан с усилителем мощности накачки 3 лазера 4 и с датчиком 1 положения распределительного вала двигателя. Фокусирующая линза 8 в верхней части через световод 5 соединена с лазером 4, а со стороны цилиндра двигателя 11 имеет упорную втулку 9, к которой прикреплено окно из кварцевого стекла, отделяющее оптическую систему от продуктов сгорания в цилиндре двигателя 11.

Усилитель мощности 3 накачки лазера 4 представляет собой пакет конденсаторов, связанный с аккумуляторной батареей.

Способ лазерного воспламенения горючей смеси в двигателе внутреннего сгорания реализуется следующим образом.

Сигнал от датчика 1 положения распределительного вала двигателя и блока синхронизации 2 и поступает в усилитель мощности накачки 3 и подается на лазер 4. Луч лазера проходит через световод 5 и с помощью линзы 8 фокусируется в фокальное пятно для получения оптического разряда на поверхности поршня 6. Фокусировка луча лазера 4 на металлическую поверхность поршня 6 активизирует процесс достижения оптического разряда воспламеняющего горючую смесь. Расположение оптического разряда на поверхности поршня регулируется в зависимости от состава горючей смеси и оборотов двигателя путем изменения времени опережения момента зажигания, подаваемого на лазер 4. Фокусирующая линза 8 расположена в корпусе воспламенителя 10 и фиксируется втулкой 9. Луч лазера проходит через кварцевое стекло (окно) 7 и фокусируется в районе поверхности поршня. Окно 7 из кварцевого стекла необходимо для защиты линзы от возможного нагара.

Таким образом, предлагаемое изобретение за счет интенсификации лазерного воспламенения ТВС на металлической поверхности поршня двигателя позволяет упростить систему зажигания, за счет использования одного лазера, повысить надежность зажигания ТВС при высоких давлениях, за счет чего достигается экономическая эффективность и, следовательно, доступность использовании лазерной системы зажигания в ДВС.

Теория и практика применения удлиненных свечей ДВС

Среди множества человеческих качеств имеется одно интересное – желание что-то изменить или улучшить. При эксплуатации автомобиля, помимо необходимого технического обслуживания по регламенту, появляется потребность улучшить его динамические и экономические характеристики. Одна из таких потенциальных потребностей – улучшение горения топливно-воздушной смеси (ТВС) в двигателе внутреннего сгорания (ДВС). Существенным компонентом, оказывающим влияние на качественный процесс горения в цилиндре, является свеча зажигания. Разговор как раз о ней.

В ДВС электроискровое зажигание используется наиболее часто. В большинстве – это электроискровые свечи зажигания (ЭСЗ), и они расположены так, что центры воспламенения (искровые промежутки) лишь незначительно выступают в просвет камеры сгорания. При этом расстояние, пробегаемое фронтом горения от точки искры до наиболее отдаленных от нее областей камеры сгорания, максимально велико. А время сгорания ТВС продолжительнее рабочего хода поршня. Чтобы обеспечить достаточно полное сгорание, используется «опережающее» зажигание. Но в данном случае от момента воспламенения до момента достижения поршнем ВМТ действует сила, направленная против вращения вала, снижающая мощность ДВС.

В связи с этим уменьшение времени сгорания ТВС является важной технической задачей. Одним из подходов к решению этой задачи является укорочение длины пробега фронта горения. Это достигается разными путями. Например, применением нескольких свечей зажигания. Использование двух свечей в одной камере, хотя и уменьшает время горения, но при этом значительно усложняет конструкцию ДВС. Другой способ – использование свечей, у которых имеются длинные электроды, выступающие в камеру сгорания.

У части ДВС с центральным расположением свечи имеется значительное расстояние от конца выступающего электрода свечи до дна поршня в ВМТ. Например, в двигателе Лацетти 1,6 это расстояние составляет 12,0 мм с закрученной штатной свечей NGK BKR6E. Таким образом, имеется техническая возможность использования этого пространства для перемещения точки искрообразования ближе к центру камеры сгорания.

Конечно, известно, что выступающая часть свечи будет испытывать более значительные тепловые нагрузки. Но и эта проблема решается подбором необходимых длинных свечей с нужной теплопроводностью, т. е. определенным калильным числом. Кроме этого, современное производство свечей использует новые технологии, которые позволяют эксплуатировать свечи до 2300–2600° С.

В штатном варианте электроды свечи выступают лишь незначительно от плоскости ГБЦ и находятся соответственно в потоке ТВС с более низкой скоростью, так как чем дальше от стенки, тем скорость потока выше. Выступающая же длинная свеча, кроме переноса центра искры ближе к центру камеры сгорания с большей скоростью потока, создает завихрения потока, входящего в цилиндр. Это увеличивает турбулентность его и скорость перемешивания топлива с воздухом, что, в свою очередь, повышает скорость горения.

Эти теории были подтверждены в 2003 году А. И. Громовым патентом на изобретение № 2216838 «Электроискровая свеча зажигания, значительно уменьшающая время сгорания топливно-воздушной смеси в ДВС», в котором описывались длинные свечные электроды, выступающие в камеру сгорания настолько, что точка искры была близка к величине радиуса цилиндра. Техническим результатом явилось уменьшение времени сгорания ТВС. Сами же процессы скоростного горения хорошо описаны А. Н. Войновым в книге «Сгорание в быстроходных поршневых двигателях» и подтверждены высокоскоростной съемкой.

Как известно, теория подтверждается только практикой. Решено было поставить эксперименты на двигателе автомобиля Chevrolet Lacetti 1,6. Для сравнения взяты свечи длиной 19,0 мм – Denso ТТ 20 и 26,5 мм – Denso K20НR-U11. Выступающая часть резьбы длинных свечей была удалена и эта поверхность отшлифована. Так как свечи были с одинаковым калильным числом 20, то для предотвращения калильного зажигания было удалено заводское металлическое уплотнительное кольцо и заменено медным толщиной в 1,0 мм для увеличения теплопроводности.

Проверочный пробег в 50 км для определения температуры свечи по цветам побежалости на отшлифованной поверхности показал, что имеется температурный запас у длинных свечей Denso K20НR-U11 в пределах 200° С до порога калильного зажигания, которое может возникать около 900° С. Пробные заезды на коротких и длинных свечах показали субъективные преимущества последних: более динамичный подхват на малых оборотах и более скоростные характеристики авто.

Читать еще:  Ветряк на шаговом двигателе схема

Но полагаться на ощущения не принято, поэтому было решено провести объективные замеры со снятием параметров с электронного блока управления (ЭБУ). Для этого использовались диагностический разъем ODBII, соединительный кабель, нетбук и программа для диагностики автомобилей Chevrolet Explorer (СЕ) (http://www.samdiagnost.ru/).

Была придумана методика сравнения без влияния человеческого фактора. Поэтому каждый старт выполнялся по одному и тому же горизонтальному участку в две стороны с разворотом. По два старта с ходу при +85° С ДВС со второй скорости равномерно установившегося движения (10 км по GPS) без нажатия педали газа, затем педаль газа быстро нажималась до упора в пол и автомобиль разгонялся без переключения МКП до 5500 об/мин. Далее выполнялась замена свечей на следующий комплект. Было проверено несколько комплектов свечей – новые Denso К20ТТ 19,0 мм, Denso K20HR-U11 26,5 мм, NGK 6BKR19,0 мм и свечи Finwhale 19,0 мм с пробегом в 15 тыс. км.

Анализ данных показал, что «углубления» центра искры в камеру сгорания на 6,8 мм вполне достаточно, чтобы получить лучшую динамику как на низких оборотах, так и на высоких. Средние же обороты (3000–3500 об/мин) были также лучше, но в меньшей степени. Выигрыш длинных свечей на средних оборотах составил 0,15 с, на низких и на высоких оборотах 0,3 с.

Штатные NGK (19 мм) «отстали» от длинных Denso на 1,1 с, а от коротких Denso на 0,8 с. Учитывая, что на 5500 об/мин на второй передаче Lacetti развивает скорость 70 км/ч, то длинные свечи переместили авто на 5,8 м дальше, чем короткие той же фирмы при прочих равных условиях!

Пробные забеги выполнялись с одним кольцом, дабы определить максимальную температуру свечи. Потом были установлены по три медных кольца с суммарной толщиной в 2,7 мм. Для спокойствия и профилактики калильного зажигания и увеличения ресурса свечи уменьшили расстояние с максимально возможного в 11,2 мм до расстояния в 9,4 мм, тогда как штатная свеча NGK BKR6E точку искры имеет на 2,6 мм от ГБЦ. Перемещения центра искры в камеру сгорания на 6,8 мм от штатного вполне достаточно, чтобы получить лучшую динамику во всем диапазоне оборотов ДВС.

В эксперименте и в дальнейшей эксплуатации использовались длинные свечи с тем же калильным числом, что и штатные, поэтому есть еще резерв с использованием длинных свечей, но с более «холодным» числом, к примеру, 22 по Denso. На момент написания статьи автомобиль с длинными свечами пробежал уже 25 тыс. км. Состояние каждой свечи – отличное!

В зависимости от требований ко времени горения смеси длина выступающих внутрь камер сгорания электродов может быть определенной для каждого ДВС в пределах возможного расстояния до дна поршня в ВМТ. Благодаря этому пробег фронта горения смеси до отдаленных областей названной камеры укорачивается.

Кроме этого, предлагаемая модернизация позволяет сместить точку зажигания на несколько угловых градусов позднее обычного, но с той же полнотой сгорания смеси. При этом возникающая сила, направленная против движения вала до ВМТ, чуть меньше, чем в штатном варианте.

Следовательно, применение более длинных свечей, но с подобранным необходимым калильным числом, позволяет повышать динамику авто, коэффициент полезного действия ДВС и топливную экономичность без снижения ресурса двигателя.

Nissan

«Мы использовали инновационные решения в области инженерии и проектирования для того, чтобы сделать наши передовые технологии доступными для всех».

Джеральдин Ингам, старший менеджер по маркетингу компании Nissan в Европе

Общие сведения

С тех пор как в 1957 году публике впервые была представлена концепция автомобиля «супермини», идея получения «больше за меньшие деньги» становится всё более популярной среди автопроизводителей и заказчиков, особенно, когда речь идет о размере автомобиля и его производительности.

Сегмент автомобилей «супермини», известный в Европе как сегмент В, значительно вырос за последние несколько десятилетий, и машины этого класса стали одними из самых продаваемых в Европе и мире. Эти популярные хэтчбеки, длиной от 3700 мм до 4200 мм становятся более просторными, многофункциональными и комфортными для вождения .

Компания Nissan Motor Co. является лидером в этой области, разрабатывая и производя линейки автомобилей, известные во всем мире, в том числе такие модели, как Note, Micra и Juke. С момента выпуска в 2005 году первого поколения Note было продано около миллиона машин по всему миру.

Задача

Растущее беспокойство относительно потребления топлива и объемов выхлопных выбросов, стало причиной глобального смещения спроса в сторону более маленьких и экономичных с этой точки зрения автомобилей. Новые мировые стандарты диктуют необходимость улучшения топливной эффективности и снижения количества выбросов углекислого газа (CО2) в атмосферу для всех автомобилей, которые будут выпущены в будущем, — также это касается изначально эффективных автомобилей супермини.

Тем не менее автомобилисты не хотят жертвовать мощностью, управляемостью, комфортом, безопасностью и другими достижениями современного автомобилестроения. В результате, автопроизводители и их поставщики сталкиваются с необходимостью постоянного совершенствования легковых автомобилей, усложнения систем трансмиссии и использования других технических приемов для того, чтобы улучшить топливную экономичность и уменьшить вредные выбросы.

Решение

Nissan стремится снизить выбросы парниковых газов и разрабатывает инновационные продукты, которые помогают повысить топливную эффективность автомобиля. Стратегия компании включает в себя использование таких перспективных технологий, как гибриды, полностью электрические транспортные средства и топливные элементы питания, а также постоянное повышение эффективности традиционных двигателей внутреннего сгорания.

Помимо использования собственных инженерных и научных ресурсов, Nissan работает с ключевыми партнерами-поставщиками для разработки передовых технологий. Примером реализации такого подхода является новый 1,2-литровый трехцилиндровый двигатель Nissan, который был объединён с высокоэффективным нагнетателем Eaton TVS (Twin Vortices Series). Такая комбинация обеспечивает экономию топлива при использовании небольшого дизельного двигателя с управляемостью и производительностью четырёхцилиндрового бензольного двигателя среднего размера.

Нагнетатели Eaton TVS обладают четырёхлопастным ротором, который поворачивается на 160 градусов, в отличие от систем, где используются только три лопасти, поворачивающиеся на 60 градусов. В сочетании с модернизированными входными и выходными отверстиями четвертая лопасть, добавленное вращение доработанного сцепления и высокоскоростной ротор создают мягкую, высокоэффективную циркуляцию воздуха непосредственно во впускную систему, что позволяет выработать больше энергии, а также улучшить шумовые и вибрационные характеристики транспортного средства.

Результат

В конце 2012 года компания Nissan представила второе поколение супермини Note в Японии, в Европе этот автомобиль был представлен в сентябре 2013 года. Новая модель Note, сборка которой осуществляется на заводах Nissan в Японии и Великобритании, обладает спортивным дизайном и множеством новейших систем безопасности. Автолюбитель может выбрать модель с одним из трех типов экономичных двигателей – в том числе с нагнетателем DIG-S.

Читать еще:  Впрыск топлива от оборотов двигателя

Несмотря на увеличившиеся габариты, новая Note легче и эффективнее своей предшественницы. Нагнетатель Eaton повышает мощность и максимальный крутящий момент при достаточно низких оборотах. Это именно то, чего хотят водители, использующие небольшие автомобили.

«Новая Note играет важную роль в нашем модельном ряде. Она сочетает в себе элегантный дизайн и целый ряд современных технологий, которые никогда раньше не предлагались на машинах в В-сегменте, — отметил Джеральдин Ингам, старший менеджер по маркетингу компании Nissan в Европе. – Мы использовали инновационные решения в области инженерии и проектирования для того, чтобы сделать наши передовые технологии доступными для всех».

За счет применения нагнетателя в сочетании с бесступенчатой трансмиссией объемы выбросов CO2 в атмосферу составляют лишь 99 г/км. Это позволяет говорить о Nissan Note, как об одном из самых «чистых» автомобилей с бензиновым двигателем в мире и дает право рассчитывать на финансовые стимулы в ряде европейских стран, что делает автомобиль ещё более привлекательным для потребителей. Для дальнейшего повышения экономии топлива и уменьшения трения двигателя, нагнетатель обладает электронной системой сцепления, которая позволяет «отключать» его от двигателя при движении на низких скоростях.

Компания Eaton является мировым лидером в сфере производства нагнетателей. Помимо повышения производительности двигателя и обеспечения максимального крутящего момента при достаточно низких оборотах, нагнетатели Eaton дают возможность экономии топлива до 5% и сокращения вредных эмиссий, по сравнению с конкурирующими технологиями.

Что же такое ТВС и какой она должна быть

Мощность двигателя, а, следовательно, скорость, разгон и рывок автомобиля напрямую зависят от характеристик энергоносителя – бензина. Но любителей и профессионалов не обманешь, они прекрасно знают, что в цилиндрах двигателя внутреннего сгорания, спрятанного под капотом любимого автомобиля, сгорает не жидкий бензин или дизель, а топливно-воздушная смесь. Именно ее состав, отношение массы атмосферного воздуха к массе жидкого топлива позволяет разогнаться до максимальной скорости, совершить рывок во время выполнения маневра обгона, или преодолеть крутой подъем.

  1. Топливно-воздушная смесь – основные понятия
  2. Бедная и богатая ТВС, узлы и системы дозирования
  3. Гомогенная и слоистая ТВС – отличия в режимах работы двигателя
  4. Использование обедненной и обогащенной ТВС

Топливно-воздушная смесь – основные понятия

Мелкодисперсная смесь атмосферного воздуха и жидкого топлива с небольшим включением парообразной фазы называется топливно-воздушной смесью или ТВС. Именно она, сгорая в цилиндрах двигателя, придает поступательное движение поршням и обеспечивает движение автомобиля.

В зависимости от своей структуры, ТВС может быть гомогенной (однородной по своему составу), или обладать слоистой структурой. В зависимости от вида нагрузки, заложенных параметров экономии топлива, и требуемого состава выхлопных газов (содержания вредных веществ и окислов азота), система впрыска топлива самостоятельно выбирает наиболее оптимальную структуру топливно-воздушной смеси.

Бедная и богатая ТВС, узлы и системы дозирования

Эмпирическая формула дает определение «нормальной» ТВС, как смеси 14,7 килограмм атмосферного воздуха и 1 килограмма жидкого топлива. Топливная смесь, количество воздуха в которой больше указанного в соотношении, называется бедной, и, соответственно, богатой, при меньшем количестве воздуха.

  • бедная — воздуха > 14,7
  • богатая — воздуха
    В двигателях внутреннего сгорания за приготовление и состав топливно-воздушной смеси отвечает карбюраторный узел, который в настоящее время практически вытеснен инжекторной системой впрыска. И одна, и другая система обеспечивает многообразие режимов работы ДВС за счет приготовления смеси с различным содержанием атмосферного воздуха.

Историческая справка. Барботажный карбюратор – единственный в своем роде узел, позволявший приготовить идеальную топливно-воздушную смесь. Такая ТВС представляла собой смесь паров и атмосферного воздуха и позволяла достигнуть максимального КПД двигателя при минимальном расходе жидкого горючего. К сожалению, конструкция барботажного карбюратора была громоздкой и небезопасной в использовании, а отношение количества воздуха и паров топлива сильно зависело от температуры окружающей среды.

Историческая справка. После принятия свода норм и законов, известного как EURO 3 и регламентирующего содержание вредных для экологии веществ в выхлопных газах автомобилей, производители ДВС перешли на многоточечную инжекторную систему впрыска топлива. Каждая форсунка обслуживает «свой» цилиндр, а электронная дозирующая система подбирает необходимый состав смеси, который хоть незначительно, но отличается от цилиндра к цилиндру. На практике такое усложнение приводит к снижению надежности и усложнению ремонта в случае поломки.

Гомогенная и слоистая ТВС – отличия в режимах работы двигателя

Однородная топливная смесь наиболее универсальна для обеспечения работы двигателя внутреннего сгорания во всех возможных режимах. Стабильная теплоотдача позволяет развить максимальную мощность, не превышая среднедопустимого давления и температуры горения в цилиндрах, что положительно сказывается на стабильности работы двигателя и его долговечности. Однако все достоинства имеют и оборотную сторону. В данном случае, это неоптимальный расход топлива, «загрязнение» выхлопных газов не сгоревшими микрочастицами.

Эти недостатки устранимы при использовании топливно-воздушной смеси слоистой структуры. В цилиндры подается обедненная смесь, расчетные параметры теплоотдачи которой обеспечивают основные режимы работы ДВС, а так же оптимальный расход топлива. Но большое содержание атмосферного воздуха приводит к нестабильному воспламенению и разной скорости горения топливной смеси при каждом такте сжатия — расширения, что является причиной падения мощности и нестабильности работы двигателя в целом.
» alt=»»>
Достигнуть единообразия позволяет впрыск в зону воспламенения небольшого количества обогащенной смеси в качестве катализатора реакции окисления. В карбюраторных двигателях для решения данной задачи используют дополнительный впускной клапан, а инжекторные системы оснащаются двухрежимной форсункой.

Использование обедненной и обогащенной ТВС

  1. Попытка уменьшить расход топлива путем регулировки топливной системы, зачастую приводит к неприятным последствиям. Увеличение количества воздуха в топливной смеси повышает температуру горения и приводит к преждевременным поломкам двигателя. Прогорание поршневых колец и эрозия стенок цилиндров – обычное дело при езде на обедненной ТВС. При все большем обеднении смеси наблюдается снижение мощности двигателя, при увеличении нагрузки появляются «провалы». Движение автомобиля становится дерганным, малейший подъем может стать непреодолимым препятствием. При достижении соотношения 30 к 1 мотор начинает глохнуть.
  2. Чрезмерное обогащение смеси не превратит стандартную модель в гоночный болид. При уменьшении содержания воздуха в ТВС двигатель начинает работать с перебоями, падает мощность, катастрофически возрастает расход топлива. По достижении определенной пропорции двигатель невозможно будет запустить.
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]