Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный ракетный двигатель

Ядерный ракетный двигатель

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают реактивными (нагрев рабочего тела в ядерном реакторе и вывод газа через сопло) и импульсными (ядерные взрывы малой мощности при равном промежутке времени).

Традиционный ЯРД в целом представляет собой конструкцию из ядерного реактора, системы подачи рабочего тела, и сопла. Рабочее тело (как правило — водород) — подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД — твёрдофазный, жидкофазный и газофазный, соответственно агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо плазма). ЯРД активно разрабатывались и испытывались в СССР (см. РД-0410) и США (cм. NERVA) с середины 1950-х годов. Исследования ведутся и в настоящее время. [1]

Содержание

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны были взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием, и, потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции передавался кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно было уменьшить. При взлёте корабль должен был лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.

Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось. Дальнейшие практические разработки в области импульсных ЯРД были прекращены в конце 1960-х гг.

Ранние разработки

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» (англ. Project Orion ) компанией «Дженерал Атомикс» (англ. «General Atomics» ) по заказу ВВС США.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollon»). Интересно, что разработчики проводили предварительные расчеты постройки на базе этой технологии звездолёта-«ноева ковчега» с массой до 40 млн. т и экипажем до 20 000 человек [2] . Согласно их расчётам, один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [3] [4] Однако приоритеты изменились и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах. [источник не указан 566 дней] Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30-40 км от поверхности Земли и затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён.

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне-25 (рядом со знаменитой Зоной-51) на полигоне Невады учёные работали над одним амбициозным проектом – полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2026,7 °C (2299,8° K) и охлаждаться жидким азотом. [источник не указан 395 дней]

Затем учёные из Лос-Аламоса решили узнать, что произойдёт, если контроль над одним из таких ядерных двигателей будет утерян, и он взорвётся. И тогда появился KIWI – эксперимент по намеренному взрыву одного из таких двигателей. В январе 1965 года ядерному ракетному двигателю под кодовым названием «KIWI» специально позволили перегреться. При температуре в 4 тысячи градусов по Цельсию реактор взорвался. Взрыв разметал 45 кг радиоактивного топлива на четверть мили. Учёные находились в воздухе, и измеряли количество радиации, которая оказалась в атмосфере. [источник не указан 395 дней]

Пять месяцев спустя произошла настоящая авария, когда перегрелся ядерный двигатель другой сборки, который носил кодовое название Phoebus. Он взорвался, когда случайно опустела одна из ёмкостей с жидким водородом. [источник не указан 395 дней]

Современные проекты

15 апреля 2011 года состоялось четвёртое заседание Рабочей группы по космосу Российско-Американской президентской комиссии по вопросам сотрудничества, на котором среди прочих вопросов исследования космоса обсуждался вопрос создания двигательных установок [5] .

22 апреля 2011 года на сайте российского Федерального космического агентства среди документации очередных открытых конкурсов размещена информация об объявлении конкурса на право заключения государственного контракта по разработке ядерной энергодвигательной установки большой мощности для межорбитального буксира, многофункциональной платформы на геостационарной орбите и межпланетных космических аппаратов [6] . Итоги конкурса будут объявлены 27 мая 2011 года [7] .

Использование ядерной энергоустановки мегаваттного класса предполагается в космическом корабле для дальних космических полётов. Эскизный проект ядерного двигателя должен быть готов к 2012 году, после этого на дальнейшую разработку проекта потребуется 17 миллиардов рублей [7] .

Читать еще:  Двигатель била своими руками

Космические полёты за лунную орбиту требуют новых технологий и единственным вариантом нового двигателя для космических кораблей является ядерная силовая установка:

«Полеты на Марс на современных двигателях займут очень много времени. Необходимо создание новой установки для сверхтяжелых ракет. Россия обладает всеми технологиями для создания двигателей подобного класса. Я надеюсь, что в 2019 году работа над двигателем должна быть закончена», — сказал глава Роскосмоса Анатолий Перминов [8] .

Зачем NASA ядерные двигатели?

NASA и Министерство энергетики США заключили с компаниями Blue Origin, General Electric Hitachi Nuclear Energy и Lockheed Martin новые контракты по созданию прототипов ядерных силовых установок для космических полётов на Марс.

Ядерные тепловые силовые установки рассматриваются в качестве одной альтернатив химическим ракетным двигателям. Они также создают тягу с помощью выхлопных газов, выбрасываемых в направлении, противоположном направлению движения. Однако ключевая разница между ними заключается в принципе производства этих выхлопных газов. В ядерном тепловом двигателе для нагрева топлива и создания тяги используется небольшой и уникальный по своим характеристикам реактор деления. В теории подобные установки могут быть во много раз эффективнее химических ракетных двигателей.

Оборонные подрядчики Lockheed Martin Corp и Aerojet Rocketdyne Holdings Inc, а также производители дронов General Atomics и BWX Technologies Inc, имеющие опыт производства ядерных компонентов, станут субподрядчиками у Blue Origin, General Electric Hitachi Nuclear Energy и Lockheed Martin.

На разработку ядерной технологии космических путешествий может потребоваться несколько лет, ведь ни одна страна в мире так и не довела создание ядерных ракетных двигателей до того уровня, когда можно говорить о более-менее безопасном применении. СССР прекратил разработку ЯРД 11Б91/РД0410 в 1988 году, через 2 года после Чернобыля. США закрыли аналогичный проект в 1965 году, сконцентрировавшись на лунной программе. Китай планирует построить свой ЯРД к 2040 году.

Как ожидается, ядерная двигательная установка обеспечивает большую эффективность топлива по сравнению с химическими ракетными двигателями. Это потенциальная технология для пилотируемых и грузовых миссий на Марс, а также научных миссий за пределами Солнечной системы. Во многих случаях она позволит выполнять более быстрые и надежные миссии.

Каждый контракт, который будет заключён через Национальную лабораторию штата Айдахо Министерства энергетики США, оценивается примерно в $5 млн. Ведомство финансирует разработку различных стратегий проектирования для достижения установленных требований к производительности, которые могут помочь в исследовании дальнего космоса. Национальная лаборатория штата Айдахо Министерства энергетики США предоставит 12-месячные контракты трём компаниям. Каждая из них разработает концептуальный проект реактора, который может удовлетворить потребности будущих миссий.

  • BWX Technologies из Линчбурга, Вирджиния. Компания будет сотрудничать с Lockheed Martin.
  • General Atomics Electromagnetic Systems из Сан-Диего. Компания будет сотрудничать с X-energy LLC и Aerojet Rocketdyne.
  • Ultra Safe Nuclear Technologies из Сиэтла. Компания будет сотрудничать с Ultra Safe Nuclear Corporation, Blue Origin, General Electric Hitachi Nuclear Energy, General Electric Research, Framatome и Materion.
  • По окончании срока исполнения контрактов Национальная лаборатория штата Айдахо Министерства энергетики США проведёт анализ проекта концепции реактора и предоставит рекомендации NASA. НАСА будет использовать эту информацию, чтобы заложить основу для будущего проектирования и разработки технологий.

Курс на Альфа Центавра. В США создадут ракетный двигатель для быстрых полетов к Марсу и дальше

Фото: Getty Images

В США представили концепт ракетного двигателя будущего, который позволит добраться до Марса за три месяца.

Химические ракетные двигатели уже близки к пределам своих мощностей, а электрические ракетные двигатели обладают слишком низкой тягой для исследования космоса. Поэтому ракетостроительная отрасль продолжает искать способы создания более эффективных и мощных ракетных двигателей на ядерной энергии. В случае успеха такие ядерные ракеты будут в несколько раз эффективнее, чем их химические аналоги.

ФОКУС в Google Новостях.

Подпишись — и всегда будь в курсе событий.

Основная же проблема заключается в том, чтобы создать ядерный реактор, который будет достаточно легким и безопасным в использовании за пределами земной атмосферы, особенно если на борту космического корабля будет экипаж.

Ядерный ракетный двигатель NERVA: забытая миссия на Марс

Сама идея ядерного ракетного двигателя (NTP), использующего энергию деления или синтеза ядер для создания реактивной тяги, далеко не нова. В 1961 году NASA и Комиссия по атомной энергии США приступили к совместному проекту NERVA для создания ядерного ракетного двигателя. В рамках программы были спроектированы и испытаны некоторые прототипы передовых двигателей.

Успехи программы побудили тогдашнего директора Центра космических полетов им. Джорджа Маршалла и пионера ракетостроения Вернера фон Брауна поддержать амбициозную миссию. Ее целью был полет на Марс дюжины астронавтов на борту космического корабля с двумя ракетами-носителями.

Каждая ракета должна была приводиться в движение тремя двигателями NERVA. Фон Браун полагал, что экипаж может отправиться на Красную планету в ноябре 1981-го и приземлиться на Марсе в августе 1982 года.

Представляя свой план в августе 1969 года, фон Браун заявил, что миссия станет большим вызовом для нации, но представляет собой задачу не сложнее, чем высадка человека на Луну.

Читать еще:  1p57fmi что за двигатель

Увы, смена приоритетов, изменение мировой политики и урезание бюджета агентства привели к свертыванию программы NASA по созданию ядерного ракетного двигателя в конце 1972 года.

Новый ядерный ракетный двигатель: в два раза быстрее

Спустя более 40 лет американское космическое агентство решило вернуться к своей программе. В 2018 году NASA снова начало работу над ядерным ракетным двигателем, назвав технологию такой, которая «меняет правила игры» в вопросах исследования глубокого космоса.

В теории космические корабли со световым парусом смогут долететь до Альфа Центавра за 20–30 лет

В отличие от традиционных ракетных двигателей, сжигающих топливо для создания тяги, в ядерной системе для нагрева рабочего тела (обычно жидкого водорода) используется непосредственно реактор. Водород выбрасывается через сопло, двигая космический корабль вперед. Это позволяет удвоить эффективность использования топлива, а значит — уменьшить размеры ракеты и сократить время полета.

В последние годы компании, занимающиеся строительством ядерных реакторов и атомных подлодок, представляли свои концепты NTP. Практически все они были так или иначе основаны на последней модификации ядерного ракетного двигателя NERVA NRX, разработанного в конце 1968 года в США.

Самую свежую проектную концепцию представила компания Ultra Safe Nuclear Technologies (USNC-Tech), которая участвует в программе, спонсируемой NASA.

Компания заявляет, что новая концепция более безопасная и надежная, чем предыдущие проекты NTP, и гораздо эффективнее, чем химическая ракета. ­Разработка обещает произвести революцию в дальних космических путешествиях, сократив время на полет от Земли до Марса до трех месяцев. На данный момент такой путь займет около семи-восьми месяцев, если планеты находятся в удачном расположении.

Тогда многие эксперты предположили, что ядерный двигатель является потомком РД-0410.

Космические двигатели будущего: солнечные паруса и топливо из темной материи

Пока ядерные ракетные двигатели остаются не более чем амбициозными проектами, которые когда-нибудь позволят человечеству исследовать космос. Наравне с ними также существуют еще более дерзкие идеи того, какими могут быть двигатели будущего.

Одна из таких идей, разработка которой уже началась, заключается в создании космических кораблей со световым парусом. В теории такие аппараты смогут долететь до Альфа Центавра за ­20–30 лет. Для этого космический корабль должен двигаться со скоростью от 15% до 20% от скорости света.

Авторы проекта Breakthrough Starshot сперва собираются запустить небольшие зонды со световыми парусами. С Земли на них направят мощные лазеры, каждый парус размером 4х4 м будет получать луч с энергией в 1 тераджоуль. Лазеры направят зонды в систему Альфа Центавра и разгонят их до необходимой скорости.

Если идея с солнечными парусами может еще хоть как-то сойти за реальный научный проект, то остальные планы скорее похожи на фантастику.

Некоторые физики-тео­ретики предполагают, что существует возможность создать топливо из антивещества. Как известно, вещество и антивещество самоуничтожаются, когда сталкиваются друг с другом, именно этот процесс аннигиляции и хотят использовать в ракетах. Вместо того чтобы использовать химическое или даже ядерное топливо, где только часть массы, поступающей на борт, преобразуется в энергию, аннигиляция вещества-антивещества преобразует 100% массы в энергию. Для топлива это предельная эффективность.

Еще более сумасшедшей идеей кажется двигатель, работающий на гипотетически существующей темной материи. Согласно теории, темной материи крайне много во Вселенной. И если ученые найдут способ собирать ее и превращать частицы темной материи в энергию, то у человечества появится источник энергии с высокой эффективностью и в неограниченных количествах.

Преимущество заключается в том, что в галактике темная материя находится буквально повсюду, а это означает, что не нужно будет брать с собой топливо.

Внедрение подобных технологий открыло бы одну из самых впечатляющих перспектив из всех: возможность достичь любого места во Вселенной. Если человечество ограничится сегодняшними ракетными технологиями, то потребуются как минимум десятки тысяч лет, чтобы совершить путешествие от Земли до ближайшей звездной системы за пределами Солнечной.

Ядерные ракетные двигатели

Основная статья: Ядерный ракетный двигатель

Ядерный ракетный двигатель — реактивный двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза). Различают радиоизотопные, ядерные и термоядерные ракетные двигатели.

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными. Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных — см. ниже), на ступенях ракет-носителей, работающих в пределах земной атмосферы. Впрочем, конструктивно совершенный ГФЯРД, исходя из его расчётных тяговых характеристик, может легко решить проблему создания полностью многоразовой одноступенчатой ракеты-носителя.

ЯРД по агрегатному состоянию ядерного топлива в них подразделяются на твёрдо, жидко- и газофазные. В твёрдофазных ЯРД делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать (лучистой энергией в данном случае можно пренебречь) газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура РТ ограничена максимальной допустимой температурой элементов конструкции (не более 3 000 °К), что ограничивает скорость истечения. Удельный импульс твердофазного ЯРД, по современным оценкам, составит 8000—9000 м/с, что более, чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Такие ядерные ракетные двигатели были созданы и успешно испытаны на стендах (программа NERVA в США, ядерный ракетный двигатель РД-0410 в СССР). Жидкофазные ЯРД являются более эффективными: ядерное топливо в их активной зоне находится в виде расплава, и, соответственно, тяговые параметры таких двигателей выше (удельный импульс может достигать величин порядка 1500 с).

Читать еще:  Автозапуск как запустить двигатель шерхан

В газофазных ЯРД (ГФЯРД) делящееся вещество (например, уран), также как и рабочее тело, находится в газообразном состоянии и удерживается в рабочей зоне электромагнитным полем (один из многих предложенных вариантов конструкции). Существует также конструкция ГФЯРД, в которой ядерное топливо (раскалённый урановый газ или плазма) заключено в термоустойчивую оптически прозрачную капсулу, т. н. ядерную лампу (light bulb) и таким образом полностью изолировано от омывающего «лампу» потока рабочего тела, вследствие чего нагрев последнего происходит за счет излучения «лампы». В некоторых разработках для материала ядерной лампы предлагалось использовать искусственный сапфир или подобные материалы. В случае же удержания ядерной плазмы электромагнитным полем существует небольшая утечка делящегося вещества во внешнюю среду и в конструкции предусмотрена подача ядерного топлива в активную зону для восполнения его количества.

Строго говоря, в случае газофазного ЯРД лишь часть активной зоны должна находиться в газообразном состоянии, так как периферийные части активной зоны могут, за счёт предварительного контактного подогрева водорода, выделять до 25 % нейтронной мощности и обеспечивать критическую конфигурацию активной зоны при относительно небольшом размере собственно газообразного ТВЭЛа. Использование, например, бериллиевого, также охлаждаемого, вытеснителя нейтронов, позволяет повысить концентрацию нейтронов в нейтронодефицитном газофазном ТВЭЛе, в 2-2,5 раза по сравнению с показателем для твердофазной части зоны. Без такого «трюка» размеры газофазного ЯРД стали бы неприемлемо большими, так как для достижения критичности газофазный ТВЭЛ должен иметь очень большой размер, из-за низкой плотности высокотемпературного газа.

Рабочее тело (водород) содержит частицы углерода для эффективного нагрева за счёт поглощения лучистой энергии. Термостойкость элементов конструкции в ЯРД этого типа не является сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 000 м/с (удельный импульс порядка 3000 с.) при температуре рабочего тела на выходе из сопла до 12000 К. В качестве ядерного топлива для ГФЯРД предлагается, в частности, уран-233. Существуют варианты ГФЯРД закрытой (в том числе с «ядерной лампой») и открытой схемы (с частичным смешением ядерного топлива и рабочего тела). Считается, что газофазные ЯРД могут быть использованы в качестве двигателей первой ступени, несмотря на утечку делящегося вещества. В случае же использования закрытой схемы ГФЯРД с «ядерной лампой» факел тяги двигателя может иметь относительно невысокую радиоактивность.

Первые исследования в области ЯРД были начаты еще в 1950-х гг. На настоящий момент ядерные ракетные двигатели с делящимся веществом в твердой фазе находятся на стадии экспериментальной отработки. В Советском Союзе и в США твердофазные ЯРД активно испытывались в 70-х годах XX века. Реактор «NERVA» был готов к использованию в качестве двигателя третьей ступени ракеты-носителя «Сатурн V», (см. Сатурн C-5N) однако лунную программу к этому времени закрыли, а других задач для этих РН не было. В СССР к концу 1970-х гг был создан и активно проходил испытания на стендовой базе в районе Семипалатинска ядерный ракетный двигатель РД- 0410. Основу этого двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твердого раствора карбида урана и карбида циркония. Температура водорода достигала 3000 К при мощности реактора

Газофазные ЯРД в настоящий момент находятся на стадии теоретической отработки, однако и в СССР, и в США проводились также и экспериментальные исследования. В СССР, в частности, был разработан действующий тепловыделяющий элемент для ГФЯРД. Ожидается, что новый толчок к работам над газофазными двигателями дадут результаты эксперимента «Плазменный кристалл», проводившегося на орбитальных космических станциях «МИР» и МКС.

На конец 1-го десятиления XXI в. нет ни одного случая практического применения ядерных ракетных двигателей, несмотря на то, что основные технические проблемы создания такого двигателя были решены ещё полвека тому назад. Основным препятствием на пути практического применения ЯРД являются оправданные опасения того, что авария летательного аппарата с ЯРД может создать значительное радиационное загрязнение атмосферы и некоторого участка поверхности Земли, нанеся как прямой вред, так и осложнив геополитическую ситуацию. Вместе с тем очевидно, что дальнейшее развитие космонавтики, приняв масштабный характер, не сможет обойтись без применения схем с ЯРД, так как химические ракетные двигатели уже достигли практического предела своей эффективности и их потенциал развития весьма ограничен, а для создания скоростного, долговременно работающего и экономически оправданного межпланетного транспорта химические двигатели по ряду причин непригодны.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]