Теория магнитного двигателя
Теория магнитного двигателя. Магнитного двигателя схема
Магнитный двигатель. Схемы | Новый способ
Конфигурация магнитных полей элементов двигателя производит силу для поддержания движения компонентов системы. Эффективная конфигурация магнитного поля представляет особенное значение в устройстве магнитного двигателя.
В случае с SEG генератором Серла работает принцип квадратов — точно подсчитанные числа создают рабочую формулу. Эта формула создаёт вокруг движущихся частей силовые линии магнитного поля, которые заставляют ролики кататься не по внешней поверхности кольца, а парить над ней в нескольких миллиметрах. Это избавляет от трения и делает двигатель генератором свободной энергии.
Генератор Серла, схемы. Searl Effect Generator Schemes
Джон Серл не только просчитал структуру магнитных полей, но и подобрал материалы для изготовления колец и роликов двигателя. К своему изобретению он шёл пол-жизни.
Генератор Серла, подробнее:
SEG Searl Effect Generator
Другие схемы имеют более простые принципы работы. Представленные схемы магнитных двигателей демонстрируют принцип: как использовать магнитные силовые линии, чтобы противодействовать трению. Также двигатели могут иметь электрические схемы для управления силами внутри схемы.
ALME, Wankel, АКМД. Схемы магнитных двигателей
Mini Romag
Magnetic Wankel
PERPETUAL MOTION MAGNETIC MACHINE (PM3)
Рис.2 Обратимый ЭМДГ с внешним МП- магнитным ротором (неполная конструкция)
Рис.6 Конструкция простейшего макета ЭМДГ на базе индуктивного электросчетчика
Теория магнитного двигателя | ModelMen.ru
Новая теория магнитного двигателя заслуживает внимания, возможно кто-то из вас попробует воплотить идею в жизнь.
Всё, что я видел и читал в Интернете связанное с магнитными двигателями, не выдерживает критики. И те действующие системы работают или от первоначального импульса или вообще не действуют. А получать от них максимальную полезную работу и использовать в промышленности или дома не реально. Это лишь доказывает о том, что сконструировать его можно, посмотрим на другой подход к этой задаче.
В обычном электромагните или постоянном магните присутствуют два полюса и не что с этим не сделать. Дело в том, чтобы работал магнитный двигатель нужно избавиться от полюсов или статора или ротора.
Просмотрим некоторые элементы электромагнетизма.
Из школьного курса физики мы знаем, как выглядит поле бесконечно длинного провода (рис 1 а).
Оно не имеет полюсов, а замкнуто само на себя. Во втором случае намотав катушку, получили конфигурацию поля с полюсами (рис 1 в). По такому принципу и получают постоянные магниты.
Теперь взглянем на поведение провода с током в магнитном поле. Можно сказать поведение магнитного поля провода.
Если внести проводник с током в магнитном поле, то в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника и ослабление магнитного поля с другой стороны проводника. В результате действия двух магнитных полей произойдет искривление магнитных линий, и они, стремясь сократиться, будут выталкивать проводник. То есть магнитное поле проводника. (рис 2)
Из курса физики этот эффект называется электромагнитной силой.
Пробуем создать эффект электромагнитной силы без проводника. Для этого нам требуется создать магнит без полюсов, я думаю понятно почему. А какой магнит больше всего подходит? Только один — тороидальный. Для сборки понадобится обычный магнит но с полюсами срезанными под 45 градусов. (рис 3 а)
Собираем конструкцию из четырех постоянных магнитов (Рис 3 в). И получилась система с замкнутыми силовыми линиями внутри магнита. Вот мы и получили тор в прямоугольном исполнении.
Теперь создаем «тору» условия для эффекта электромагнитной силы (рис 4)
Как видно магнитное поле «тороидальной системы» направлено по часовой стрелке, а внешнее поле от северного полюса к южному, поэтому происходит эффект смещения, что порождает силу F.
Если собирать такой двигатель, то для статора лучше подойдет кольцевой магнит с аксиальным вектором намагниченности. Все привожу без формул, они здесь лишние.
Получится, нет? Пробуйте!
Устройство магнитного двигателя
Несмотря на большое количество вполне правдоподобных теорий, фактически, магнитный двигатель еще не создан. Хотя, в этом направлении ведутся научные работы, но серьезных результатов еще нет. Для того, чтобы на практике представить себе устройство магнитного двигателя, необходимо иметь точное представлениео его работе и принципе действия в целом.
Свойства магнитного двигателя
Обычный электрический мотор коренным образом отличается от магнитного двигателя. Несмотря на то, что здесь используются магниты, основой всего движения служит электрический ток.
Работа настоящего магнитного двигателя, в отличие от электромотора, осуществляется только с помощью магнитов. Для этого используется их постоянная энергия, которая и перемещает все части и механизмы.
Самая простая конструкция представляет собой различные крутящиеся и качающиеся магниты. Кроме постоянных магнитов, в них параллельно используются батарейки.
Принцип работы
На первых двигателях использовалось железо, которое должно было притягиваться магнитом. Однако, для того, чтобы железная деталь вернулась в исходное положение, необходимо такое же количество энергии.
Для того, чтобы решить эту проблему, было использовано свойство медного проводника, по которому пропущен электрический ток. Происходит притяжение к магниту такого проводника. Это взаимодействие прекращается, когда проводник остается без тока.
Таким образом, действие силы магнита находится в прямой пропорциональной зависимости от его мощности. Поэтому, если электрический ток в проводнике будет постоянным, а сила магнита будет увеличиваться, то и действие силы на проводник тоже будет возрастать. Произойдет повышение силы, необходимой для вырабатывания тока, который будет пропускаться через проводник.
При длительных исследованиях, устройство магнитного двигателя своими конструктивными особенностями доказывает возможность получать с помощью сверхпроводящих и постоянных магнитов устойчивый альтернативный источник энергии.
Двигатель на постоянных магнитах
Согласно закону сохранения энергии, любой современный эл. привод не может иметь КПД выше 100%, потому как часть энергии нужно потратить на собственные нужды. Решить этот вечный вопрос призван двигатель на постоянных магнитах (униполярный, линейный, роторный, гравитационный и т. п), в котором механическое перемещение компонентов происходит за счет их взаимодействия на уровне магнитных свойств.
Принцип действия вечного магнитного движителя
Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.
Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.
Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.
На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.
Рассмотрим каждый из примеров подробнее.
Магнитный униполярный двигатель Тесла
Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.
Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.
Магнитный двигатель Тесла и его схема
На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.
Двигатель Минато
Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.
Двигатель Минато
Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.
Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.
Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.
Двигатель Лазарева
Устройство двигателя Лазарева
Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.
Магнитный мотор Говарда Джонсона
Магнитный мотор Говарда Джонсона
В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.
Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.
Генератор Перендева
Генератор Перендева
Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.
Синхронный двигатель на постоянных магнитах
Устройство синхронного двигателя на магнитах
Одним из основных видов электродвигателей является синхронный, частота вращения магнитных полей статора и ротора которого равны. У обычного электромагнитного мотора обе эти части состоят из обмоток на пластинах. Но если конструкцию якоря поменять и вместо катушки поставить постоянные магниты, то можно получить интересную, эффективную, действующую модель синхронного двигателя. Статор имеет привычную компоновку магнитопровода из пластин и обмоток, в которых способно генерироваться вращающееся магнитное поле от электрического тока. Ротор создает постоянное поле, которое взаимодействует с предыдущим, и создает крутящий момент.
Также следует отметить, что в зависимости от схемы, относительное расположение статора и якоря могут меняться, например, последний будет выполнен в форме внешней оболочки. Для пуска мотора от тока из сети используется цепь из магнитного пускателя (реле, контактора) и теплового защитного реле.
Магнитный двигатель
С давних пор многие ученые и изобретатели мечтали построить так называемый вечный двигатель. Работа над этим вопросом не прекращается и в настоящее время. Основным толчком к исследованиям в данной области послужил надвигающийся топливный и энергетический кризис, который вполне может стать реальностью. Поэтому, уже в течение длительного времени разрабатывается такой вариант, как магнитный двигатель, схема которого основана на индивидуальных свойствах постоянных магнитов. Здесь главной движущей силой выступает энергия магнитного поля.
Из чего состоит магнитный двигатель
Следует отметить, что все подобные изыскания проводятся, в основном, теоретически. На практике такой двигатель еще не создан, хотя определенные результаты уже имеются. Уже разработаны общие направления, позволяющие понять принцип работы этого устройства.
Конструкция магнитного двигателя коренным образом отличается от обыкновенного электрического мотора, где главной движущей силой является электрический ток.
Магнитный двигатель функционирует исключительно за счет постоянной энергии магнитов, приводящей в движение все части и детали механизма. Стандартная конструкция агрегата состоит из трех основных деталей. Кроме самого двигателя, здесь имеется статор, на который устанавливается электромагнит, а также, ротор, на котором размещается постоянный магнит.
Вместе с двигателем, на один и тот же вал, производится установка электромеханического генератора. Кроме того, весь агрегат оборудован статическим электромагнитом. Он выполнен в виде кольцевого магнитопровода, в котором вырезается сегмент или дуга. Электромагнит дополнительно оборудован катушкой индуктивности. К ней производится подключение электронного коммутатора, с помощью которого обеспечивается реверсивный ток. Регулировка всех процессов осуществляется электронным коммутатором.
Принцип работы магнитного двигателя
В первых моделях применялись железные части, на которые должен был оказывать влияние магнит. Однако, чтобы вернуть такую деталь в исходное положение, нужно затратить столько же энергии.
Для решения этой проблемы был использован медный проводник с пропущенным по нему электрическим током, который мог притягиваться к магниту. При отключении тока, взаимодействие между проводником и магнитом прекращалось. В результате проведенных исследований была обнаружена прямая пропорциональная зависимость силы воздействия магнита от его мощности. Поэтому, при постоянном электрическом токе в проводнике и увеличивающейся силе магнита, воздействие этой силы на проводник также будет расти. С помощью повышенной силы будет вырабатываться ток, который, в свою очередь, будет проходить через проводник.
На этом принципе был разработан более совершенный магнитный двигатель, схема которого включает все основные этапы его работы. Его пуск производится электротоком, поступающим в индуктивную катушку. При этом, расположение полюсов постоянного магнита перпендикулярно к вырезанному зазору в электромагните. Возникает полярность, в результате которой начинается вращение постоянного магнита, установленного на роторе. Его полюса начинают притягиваться к электромагнитным полюсам с противоположным значением.
При совпадении разноименных полюсов, происходит выключение тока в катушке. Ротор, под действием собственного веса, вместе с постоянным магнитом проходит за счет инерции эту точку совпадения. Одновременно, в катушке изменяется направление тока, и полюса в очередном рабочем цикле принимают одноименное значение. Происходит отталкивание полюсов, заставляющее ротор дополнительно ускоряться.
Российские ученые поднимутся в воздух на сверхпроводниковом двигателе
5 февраля в Новосибирске начались наземные отработки самолета — летающей лаборатории с демонстратором гибридной силовой установки (ГСУ), оснащенной сверхпроводниковым (ВТСП) электродвигателем мощностью 500 кВт.
В авиации с 2011 году перспективным направлением признаны самолеты с электродвигателями. Ряд инновационных проектов инициированы известными компаниями и организациями (Airbus, Boeing, NASA, DARPA, JAXA). Достигнуты значимые результаты в виде демонстраторов технологий.
Так, год назад Европейская авиастроительная корпорация Airbus совместно с компаниями Rolls-Royce и Siemens начала реализовывать программу E-Fan X, с конечной целью — создание «электрического» самолета. Демонстратор технологий должен был совершить первый полет в 2020 году, но в апреле 2020 года программа была свернута из-за пандемии COVID-19. В рамках этой программы Airbus намеревалась поднять в воздух среднеразмерный пассажирский реактивный самолет BAe 146, оснащенный одним опытным электродвигателем, мощность которого составляла бы 2 МВт (в штатном варианте BAe 146 имеет четыре турбовентиляторных реактивных двигателя).
В России разработкой электросамолетов занимается Фонд Перспективных Исследований, а конкретно — реализующее проект Фонда московское ЗАО «СуперОкс» (разработки на основе оксидных сверхпроводников). Как рассказал эксклюзивно для «Наука» заместитель генерального директора по аэрокосмическим технологиям ЗАО «СуперОкс» Алексей Сергеевич Воронов «В апреле 2021 года планируется завершение научно-технического проекта ФПИ «Контур» по созданию электродвигателя на основе высокотемпературных сверхпроводящих (ВТСП) материалов 2-го поколения. В рамках проекта разработан демонстратор авиационной интегрированной электроэнергетической системы (АИЭС) для перспективных летательных аппаратов на основе единой ВТСП-платформы, включающей подсистемы выработки электроэнергии, ее преобразования и передачи, а также высокоэффективного привода воздушного винта. Основные элементы АИЭС представлены на рисунках 1, 1а, 1б.
Схема авиационной интегрированной электроэнергетической системы (АИЭС) на основе единой ВТСП-платформ
Фото: Фото предоставлено компанией «СуперОкс»
Рис. 1а. ВТСП-двигатель
Фото: Фото предоставлено компанией «СуперОкс»
Рис. 1б. ВТСП-кабель
Фото: Фото предоставлено компанией «СуперОкс»
Схема авиационной интегрированной электроэнергетической системы (АИЭС) на основе единой ВТСП-платформ
Фото: Фото предоставлено компанией «СуперОкс»
Рис. 1а. ВТСП-двигатель
Фото: Фото предоставлено компанией «СуперОкс»
Рис. 1б. ВТСП-кабель
Фото: Фото предоставлено компанией «СуперОкс»
Мощность двигателя составляет 500 кВт. Ключевыми отличиями разработанной электроэнергетической системы от существующих образцов является принцип сверхпроводимости и технология получения высокотемпературных сверхпроводников в виде провода (ленты) и возможность производства из ВТСП-лент 2-го поколения элементов электрических и электромагнитных систем. Разработка защищена десятками патентов и Ноу-Хау. Созданный в ходе выполнения проекта «Контур» научно-технический задел обеспечивает возможность:
- повышения удельной мощности электрических машин до 5 кВт/кг и более;
- снижения расхода топлива до 30%;
- снижения шумности на 20%;
- повышения транспортной эффективности на 10%.
На период с 2021 по 2026 годы запланирована разработка технологии создания полностью электрического самолета, что позволит Российской Федерации стать мировым лидером в переходе от традиционного парка самолетов, к аппаратам нового поколения».
Эффективность применения авиационной техники в терминах расхода топлива и стоимости пассажиро-километра или тонно-километра определяется весовой эффективностью используемой силовой установки. Традиционные подходы к созданию силовых установок, когда энергия топлива при сжигании преобразуется в тягу напрямую (турбореактивный двигатель – реактивная тяга, турбовентиляторный двигатель – воздушная тяга второго контура, турбовинтовой двигатель – тяга винта), достигли своего предела ввиду отсутствия потенциала для модернизации и оптимизации за приемлемую стоимость и время.
Концепция гибридных силовых установок (ГСУ) позволяет наиболее эффективно реализовывать расход топлива (источника энергии) вне зависимости от профиля полета летательного аппарата. Такой эффект достигается за счет того, что в гибридной схеме используются электрические приводы винта или вентилятора, а также существует энергетический буфер в виде аккумуляторных батарей. Применение подхода, когда генерация, передача и распределение энергии производится по электрическим проводам, позволяет управлять расходом топлива имея прогноз потребления энергии на борту ЛА.
В настоящее время ГСУ реализованы и серийно выпускаются для образцов автомобильной техники. А.С.Воронов убежден, что единственным подходом к созданию высокоэффективной ГСУ, способной конкурировать с существующими энергоустановками, является использование ВТСП-материалов, которые кратно отличаются от традиционных проводников (медь, алюминий и их сплавы) по токо-несущей способности. Они позволяют создавать эффективные электродвигатели, силовые кабели, системы защиты от токов короткого замыкания, которые отличают предельно высокие удельные мощностные характеристики. Развитие технологий производства ВТСП-лент привело к созданию более совершенных ВТСП-двигателей и значительному расширению сфер их применения. Снижение потерь на переменном токе в ВТСП-ленте 2-го поколения более чем в 10 раз обеспечило возможность в ходе проекта «Контур» впервые в мире изготовить из ВТСП-материалов статорные обмотки и разработать для демонстратора ВТСП-АИЭС эффективные электрические машины с меньшими массо-габаритными характеристиками и заданной скоростью вращения вала. В основе этих электрических машин лежит принцип построения синхронной электрической машины с использованием сверхпроводников в качестве токонесущих элементов.
Более высокая плотность тока, допустимая в ВТСП-материалах, приводит к значительному улучшению основных характеристик электрической машины и кабелей. С целью обеспечения криогенных температур, необходимых для функционирования сверхпроводников, были использованы доступные технологии криостатирования (вакуумные криостаты с многослойной изоляцией) и криоохлаждения (криокулеры, жидкий азот в качестве криогенной жидкости).
За счет усовершенствования технологии производства и повышения инженерной плотности тока ВТСП-ленты представляется возможным модернизировать имеющиеся технологии и создавать электрические машины на ВТСП мегаваттного класса. Степень надежности как электрической машины, так и других элементов ВТСП-системы и системы криогенного обеспечения при этом выходит на более высокий уровень.
Основные технологические проблемы, решенные в ходе проекта «Контур», заключались в необходимости создания ВТСП-провода, обеспечивающего возможность работы элементов статора двигателя в переменном магнитном поле с критическим током более 150 Ампер при частоте 250-300 Гц, а также интеграции криогенной среды в «теплую» электрическую машину с необходимостью теплоизоляции криогенного объема. «Нами решена задача объединения ВТСП-элементов в единую систему с общим криогенным охлаждением!» — доволен результатом Воронов.
При создании нового двигателя также решена задача повышения выживаемости ВТСП-обмоток при многократном ударном термоциклировании с комнатной температуры до температуры жидкого азота. Обеспечение необходимого криогенного охлаждения ВТСП-элементов системы достигнуто за счет увеличения скорости и объема прокачки хладагента, эффективными тепловыми развязками и мостами, обеспечением работы с переохлажденным жидким азотом в диапазоне температур от 77 К до 70 К. Контроль уровня охлаждения обеспечивался организацией сбора требуемых параметров (температуры, давления и т.д.) и передачу собранной информации в систему управления.
ЗАО «СуперОкс»
Изготовление компонентов ВТСП освоено на производственной площадке ЗАО «СуперОкс» в Москве (технопарк на Калужской). Разработкой заинтересовалось Минпромторговли РФ.