Электрическая схема подключения коллекторного двигателя
Электрическая схема подключения коллекторного двигателя
Коллекторный двигатель постоянного тока с электромагнитным возбуждением предназначен для привода специального механизма, а также может быть использован в различных областях техники.
Структура условного обозначения
Д-15:
Д — двигатель;
15 — порядковый номер разработки;
#61
Температура окружающего воздуха от минус 60 до 50°С.
Верхнее значение относительной влажности воздуха в течение 48 ч — 98% при (35+5)°С.
Пониженное атмосферное давление в течение 5 мин — 667 Па (5 мм рт.ст.).
Двигатель устойчив к воздействию:
вибрационных нагрузок, определяющих виброустойчивость;
в диапазоне частот от 5 до 35 Гц при амплитуде 1 мм продолжительностью 3 мин;
в диапазоне частот свыше 35 до 2000 Гц с ускорением от 39,2 до 147,1 м·с — 2 и общей продолжительностью 23 мин;
вибрационных нагрузок, определяющих вибропрочность в диапазоне частот от 10 до 2000 Гц с ускорением от 20 до 40 м·с — 2 и общей продолжительностью 46 ч в обесточенном состоянии и 2,8 ч при электрической нагрузке;
ударных многократных нагрузок с ускорением 49 м·с — 2 в диапазоне частот от 40 до 100 ударов в минуту длительностью импульса от 5 до 10 мс, допустимое число ударов до 10000;
линейных центробежных нагрузок с ускорениум 58,9 м·с — 2 продолжительностью 5 мин и 88,3 м·с — 2 продолжительностью 15 мин.
Двигатель соответствует требованиям технических условий 0ДС.515.189 и комплекта конструкторской документации согласно 1ДС. 599. 030.1СД.
Условия транспортирования двигателя в упаковке предприятия-изготовителя в части воздействия механических факторов соответствуют условиям Л по ГОСТ 23216-78, в части воздействия климатических факторов внешней среды — таким же, как условия хранения 5 по ГОСТ 15150-69.
При транспортировании двигателей морским видом транспорта более 2 сут изделие должно быть защищено от морской влаги.
Условия хранения двигателя соответствуют условиям 1 (отапливаемое хранилище), условиям 3 (неотапливаемое хранилище) и условиям 5 (навесы в макроклиматических районах с умеренным и холодным климатом) по ГОСТ 15150-69.
При хранении двигатель, вмонтированный в аппаратуру изделия, необходимо проверять на функционирование не реже 1 раза в год. При этом двигатель работает при напряжении питания 27 В на холостом ходу или при номинальном вращающем моменте в течение 1 мин.
Двигатель следует использовать в соответствии с техническим описанием и инструкцией по эксплуатации 1ДС.599.030.1 ТО.
Изготовитель гарантирует качество двигателя при соблюдении режимов работы и условий эксплуатации. 0ДС.515.189,1ДС.599.030.1СД
Номинальное напряжение питания, В — 27 Номинальный вращающий момент, Н·м — 0,98 Номинальная частота вращения, мин -1 — 8000 Потребляемый ток при номинальном вращающем моменте, А, не более — 50 Потребляемый ток холостого хода, А, не более — 12 Частота вращения холостого хода, мин -1 , не более — 11000 КПД, % — 70 Момент инерции якоря, кг·м 2 , не более — 7,33.10 — 4 Масса, кг, не более — 6
Двигатель в течение 5 мин допускает работу при напряжении питания от 22 до 30 В при номинальном вращающем моменте. При этом частота вращения двигателя в конце работы в нормальных климатических условиях изменяется в пределах (5700-9500) мин -1 , а потребляемый ток должен быть не более 55 А.
При этом режиме двигатель допускает одноразовую работу в течение 30 с при вращающем моменте 1,96 Н·м. Параметры двигателя при этом не оговариваются.
В течение 10 мин двигатель допускает работу при напряжении питания от 22 до 30 В, нормальном атмосферном давлении и верхнем значении температуры на холостом ходу, а затем в течение 4,5 мин при пониженном атмосферном давлении с номинальным вращающим моментом и в течение 30 с вращающим моментом 1,96 Н·м.
Номинальный режим работы двигателя — повторно-кратковременный при напряжении питания 27 В:
15 мин при вращающем моменте 0,73 Н·м;
5 мин при вращающем моменте 0,98 Н·м;
при вращающем моменте 1,96 Н·м с последующим перерывом не менее
30 мин.
Направление вращения вала левое со стороны выхода вала.
Конструктивное исполнение по способу монтажа по ГОСТ 2479-79 IМ3081.
Сопротивление изоляции электрических цепей относительно корпуса двигателя в нормальных климатических условиях при практически холодном состоянии до ввода двигателя в эксплуатацию не менее 20 МОм.
В течение срока службы и минимальной наработки сопротивление изоляции при практически холодном состоянии двигателя не менее 1 МОм.
Изоляция электрических цепей относительно корпуса выдерживает без пробоя и перекрытия воздействие испытательного напряжения 550 В (действующее значение) переменного тока с частотой 50 Гц.
Степень искрения на коллекторе двигателя при номинальных напряжении питания и вращающем моменте в нормальных климатических условиях не превышает 2 по ГОСТ 183-74.
Минимальная наработка двигателя 60 ч при номинальном напряжении питания: 20 ч непрерывно при вращающем моменте 0,69 Н·м; 40 ч в номинальном режиме, в том числе в течение 6 ч при верхнем значении температуры.
Минимальный срок службы двигателя — 8,5 лет.
Минимальный срок сохраняемости двигателя в отапливаемом хранилище — 8,5 лет, в том числе: не более 1 года в упаковке предприятия-изготовителя; не более 8,5 лет вмонтированным в аппаратуру изделия.
В пределах срока сохраняемости допускается хранение двигателя вмонтированным в аппаратуру защищенного изделия: не более 5 лет в неотапливаемом хранилище; не более 1 года под навесом.
Гарантийная наработка в пределах гарантийного срока эксплуатации — 60 ч.
Гарантийный срок эксплуатации — 8,5 лет.
Гарантийный срок хранения — 8,5 лет.
Конструкция и принцип действия
Двигатель представляет собой четырехполюсную коллекторную машину постоянного тока защищенного исполнения с электромагнитным возбуждением.
Принципиальная электрическая схема включения электродвигателя — на рис. 1, габаритные, установочные и присоединительные размеры представлены на рис. 2.
Принципиальная электрическая схема включения электродвигателя
Д-15
Вид со стороны коллектора.
Примечание:
Полярность не влияет на направление вращения и выбирается
произвольно.
Габаритные, установочные и присоединительные размеры
электродвигателя Д-15:
Примечания:
1. Координаты центра тяжести ЦМ считаются ориентировочными.
2. Детали А, запирающие шарикоподшипник, при монтаже необходимо
снять.
3. Деталь, устанавливаемая заказчиком на выходной конец вала,
должна упираться в шарикоподшипник, торец, упирающийся в
шарикоподшипник, должен отвечать следующим требованиям: а) его наружный диаметр не более 17 мм;
б) торцевое биение относительно посадочного диаметра не более 0,3 мм;
в) шероховатость поверхности по 7 классу.
Щиты, изготовленные из алюминиевого сплава, стягиваются через корпус двумя шпильками. На щите смонтирован пластмассовый суппорт с двумя парами щеткодержателей и крепится к щиту двумя армированными в суппорте винтами и гайками. Ослабив гайки, можно осуществить поворот суппорта для сдвига щеток.
Коллектор выполнен из медных пластин, опрессованных пластмассой, в которую армирована стальная втулка. На вал насажены два радиальных шарикоподшипника закрытого типа. Подшипник в щите крепится фланцем, а на валу втулкой. Обмотка якоря заложена в пазы сердечника, собранного из листовой электротехнической стали. Для балансировки якоря используют балансировочное кольцо и кольцо коллекторной втулки.
К стальному корпусу привернуты полюсы, собранные из листовой электротехнической стали. На полюсах расположены катушки возбуждения. Со стороны щита на вал устанавливается вентилятор. К щиту крепится колпак, защищающий коллекторную часть машины от внешних воздействий. ¬
В комплект поставки входят двигатель и паспорт.
Техническое описание и инструкция по эксплуатации поставляются каждому заказчику в одном экземпляре с первой партией двигателей.
Подключение электродвигателя на 220 Вольт
Для чего это нужно
В большинстве моделей различного электроинструмента используются электрические движки. Но со временем они изнашиваются, и приходится покупать новый электроинструмент. Отработавшие своё движки, тем не менее, не стоит выбрасывать. Если есть электроинструмент, значит, хозяин умеет им работать. И у него, скорее всего, бывает необходимость сделать какие-либо работы по хозяйству дома или на даче. А в этом старые движки могут очень даже помочь. Их можно применить в домашних самоделках для заточки, полировки и даже для стрижки травы.
Как подключить движок с коллектором
Коллекторные двигатели могут работать и на постоянном и на переменном напряжении. Это один из наиболее распространённых типов движков среди используемых для ручного электроинструмента и некоторых других электроприборов. Во многих из них электродвигатель работает от электронной схемы управления. Но если она сгорела, и электроприбор перестал работать, наверняка движок исправен, и его можно включить в сеть напрямую. Но если двигатель работал с электронной схемой как коллекторный двигатель постоянного тока, скорее всего он не будет развивать такие же обороты, что и в устройстве с электронной схемой управления.
Чтобы такой движок запустить от сети 220 В, надо соединить щётки коллектора и статор последовательно. При этом токи в роторе и статоре получатся меньше чем при работе в составе электронной схемы, и движок будет вращаться медленнее. Но зато не требуется никаких дополнительных элементов кроме самого движка, сетевого кабеля и вилки. Если такой двигатель используется в газонокосилке или иной самоделке с длинным сетевым кабелем, конечно же, потребуется ещё и выключатель расположенный вблизи этого движка. Разбираться с таким движком надо с осторожностью. Особенно если в нём более 4-х точек для соединения, то есть проводов обмотки статора не 2 а 3 или больше.
Это говорит о том, что двигатель переключался на разные скорости с использованием частей обмотки статора. Чтобы выполнить подключение электродвигателя на 220 Вольт к электросети его надо надёжно зажать либо в тисках, либо прижать струбциной. Подключив не полную обмотку статора, обороты могут быть слишком велики, и незакреплённый движок может сорваться с места и натворить бед. Если потребуется изменить вращение ротора на противоположное, надо поменять местами либо клеммы статора, либо клеммы щёток.
Как подключить асинхронный движок
Другим довольно-таки распространённым типом электродвижка является асинхронный двигатель. Наиболее часто его устанавливают в вентиляторах. Если известно, что движок именно оттуда, скорее всего он сконструирован на несколько скоростей. Об этом будут свидетельствовать несколько дополнительных выводов, которые являются ответвлениями основной обмотки статора. В движке, который рассчитан на работу с одной скоростью обмоток две. Поэтому в нём возможны ответвления от обмоток либо как 3, либо как 4 вывода. При трёх выводах обмотки уже соединены последовательно. При четырёх выводах надо разобраться с ними используя тестер.
Обмотки обеспечивают перемещение магнитного поля в пределах 90 градусов. Дополнительная обмотка используется для создания перемещающегося максимума магнитного поля и называется пусковой обмоткой. Поэтому если выводов 3 или больше всегда можно определить, используя тестер, где какая из них. Обмотка как пусковая, так и переключающая обороты имеют более высокое сопротивление. Для подключения асинхронного электродвигателя на 220 Вольт применяются схемы, показанные далее.
В некоторых моделях движков резистор встраивается в корпус и поэтому в них только два вывода. Такой двигатель должен вращаться сразу при подаче напряжения 220 В на эти обмоточные выводы. Но если этого не происходит, а тестер показывает некоторое значение сопротивления, значит, одна из обмоток оборвана. Такой движок уже никак не используешь без ремонта в виде перемотки повреждённой обмотки. Использование конденсатора для получения перемещающего магнитного поля является самым популярным техническим решением. Если необходимо таким способом подключить движок потребуется величина его мощности.
- Конденсатор для асинхронного двигателя выбирается по мощности. Для каждых ста Ватт мощности движка надо примерно семь микрофарад ёмкости конденсатора.
БУ движки стиральных машин
Если используется движок от стиральной машинки, он может принадлежать к одному из трёх типов. В старых моделях машин использовалась отдельные ёмкости для стирки и для отжима. Для стирки применялся асинхронный движок, поскольку его оборотов было вполне достаточно для создания движения воды. Для отжима применялась центрифуга с приводом от коллекторного двигателя. Эти типы двигателей можно применять для каких-либо целей, а как сделать подключение для этого, рассмотрено выше.
Но среди более современных машин встречаются такие модели, у которых выполнен прямой привод на вращающийся барабан для стирки. В них применяются специальные двигатели, управляемые от электронного коммутатора. Он создаёт вращение магнитного поля с необходимой скоростью. Без такого коммутатора двигатель работать не будет. Тем более нельзя подключать его к сети 220 В напрямую.
В некоторых моделях двигателей стиральных машин могут использоваться тахометры, встроенные в корпус движка. Поэтому необходимо обязательно выяснить назначение дополнительных выводов в двигателе перед подключением его к сети 220 В. Бывает так, что это возможно сделать, только узнав, как выглядит движок изнутри, разобрав его. Если сложно идентифицировать конструкцию двигателя самостоятельно, лучше обратиться к специалисту. Это поможет сохранить двигатель в исправном состоянии.
МИСТЕР ЭЛЕКТРИК СЕРГИЕВ ПОСАД
Каталог статей
В современных стиральных машинах применяются коллекторные двигатели. Взглянув на двигатель, вы сразу же удивитесь — как же его подключить для собственных нужд. Ведь у него 2 вывода от щеток и 2 вывода от одной обмотки.
А где же еще одна обмотка ? — вы спросите. Мы привыкли к пусковым конденсаторам и обмоткам. А что же тут?
Содержание:
1. Применение коллекторных двигателей в стиральных машинах
Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели.
Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC. Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.
2. Устройство коллекторного двигателя для стиральной машины
Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)
Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя . На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.
2.1 Ротор (якорь)
Рис.3 Ротор (якорь) коллекторного двигателя | Ротор (якорь) — вращающаяся (подвижная) часть двигателя (Рис.3). На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором. Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор тахогенератора. |
2.2 Статор
Статор — неподвижная часть двигателя (Рис.4) . Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях. | Рис.4 Статор коллекторного двигателя (вид с торца) |
Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.
2.3 Щётка
2.4 Тахогенератор
3. Схема подключения коллекторного двигателя
Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7).
У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.
Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.
Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.
На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).
Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.
Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).
Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.
4. Управление коллекторным двигателем в стиральной машине
Рис.8 Симистор (триак) электронный ключ | Для управления коллекторным двигателем, в стиральной машине применяется электронная схема ,силовым регулирующим элементом является симистор (Рис.8), который подает (пропускает) необходимое напряжение на двигатель. Симистор можно представит как быстродействующий выключатель (ключ),с силовыми электродами А1 и А2,а на управляющий затвор G поступают управляющие импульсы открывая его в нужный момент. В электрической схеме, симистор последовательно подключён с коллекторным двигателем. |
Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.
Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.
Ниже, на (Рис.10) представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC).
Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY),тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 ,коммутирующие обмотки двигателя.
EC-блок управления Т-тахогенератор М-ротор (коллекторно-щёточный узел) S-статор P-тепловая защита TY-симистор R1 и R2— коммутирующие реле |
Рис.10 Изменение направления вращения двигателя
В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах («диодный мост»). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.
5. Достоинства и недостатки универсальных коллекторных двигателей
6. Неисправности коллекторных двигателей
Самая уязвимая часть двигателя — коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.
Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.
Как подключить двигатель стиральной машины к сети: разбираем несколько вариантов
В наше время почти в каждой семье имеется стиральная машина. Но в этом мире нет ничего вечного. Стиральные машины тоже приходят в негодность и требуют замены. Но в некоторых семьях есть мужчины-самодельщики. Такую интересную вещь, как стиральная машина, они не отнесут на свалку в день поломки, а разберут её на части и оставят в своём мужском хозяйстве самые интересные детали. А интересного в машине много. Самое главное – это электродвигатель. Вот о нём и стоит поговорить подробней. Как же подключить двигатель стиральной машины к сети – об этом поговорим в этой статье.
Электрическая схема стиральной машины
Хорошо разбираться в электрической схеме стиральной машины каждый рядовой пользователь совсем не обязан. Это необходимо тем, кто занимается ремонтом этого представителя сложной бытовой техники. Но общее представление об её устройстве не помешает никому.
Любая стиральная машина состоит из механической и электрической части. К механике относится корпус, дверца, барабан, все подшипники и шестерёнки. Для амортизации машины от тряски при отжиме установлены пружины. Подача воды в машину и слив из неё происходят по шлангам, которые закреплены в патрубках с уплотнениями. В системе слива на выходе установлен сливной насос. Для загрузки стиральных средств в машину встраивается трёхсекционный лоток.
К электрической части относятся электродвигатель, электрическая схема его включения, двигатель сливного насоса, комплекс устройств, формирующих алгоритм и безопасность процесса стирки.
Электрическая схема стиральной машины, в первую очередь, предназначена для включения мотора.
Электромотор и барабан – это детали, легко переходящие в другую жизнь. Особенно, мотор. Существуют модели, оснащённые двумя электродвигателями: один – основной для стирки, со скоростью вращения около 2000 оборотов в минуту, а второй – скоростной для центрифуги отжима, со скоростью вращения около 3000 оборотов в минуту.
Система управления реализует выбранную хозяйкой программу стирки. В старых машинах они базируются на реле времени, в современных машинах это электронные системы. На каждую операцию программы выделяют определённое время, формируют команду на включение двигателя в ту или другую сторону. В некоторых моделях имеется третий электромотор, который приводит в действие кулачковое программное устройство.
Схема управления контролирует температуру обмоток двигателя с целю защиты его от перегрузки. Датчики уровня и давления дают информацию для управления подачей воды. Нагрев жидкости для стирки тоже происходит в самой машине. Регулятор температуры (термостат), работающий в комплекте с датчиком температуры, включает и выключает электрические нагреватели. Если двигатель в машине с переменной скоростью, то в системе управления предусмотрен датчик скорости (тахогенератор).
Хозяин задаёт машине свои желания с панели управления, расположенной в верхней лицевой части корпуса машины.
Для безопасности пользователя во всех машинах предусмотрена система блокировок. Она не позволяет включить мотор при открытой загрузочной дверце и открыть дверцу при наличии в машине воды. Обратный клапан на подающей воду трубе защищает от затопления.
Стиральная машина подключается к электросети трёхполюсной вилкой с заземлением.
Что необходимо учесть при подключении двигателей от стиральной машины разного типа
Стиральная машина подключается к электрической сети в соответствии с «ПУЭ 7. Правила устройства электроустановок».
Схема подключения стиральной машины к электрической сети
ФОТО: 1stiralnaya.ru
Даже поверхностное знакомство с устройством машины и её электрической схемой обеспечивают более сознательную её эксплуатацию и возможность минимизировать количество аварийных ситуаций. Принципиальная электрическая схема является графическим изображением основных электрических компонентов машины и связей между ними.
Электродвигатели в стиральных машинах используется трёх типов.
Асинхронный
В большинстве стиральных машин выпусков прежних лет применяются трёхфазные асинхронные двигатели, каждый из которых состоит из неподвижного статора и вращающегося ротора. Переменный ток инициирует в секциях обмотки статора вращающееся магнитное поле, которое индуцирует ток в роторе. Этот вторичный наведённый ток взаимодействует с магнитным полем статора, и на ротор начинает действовать вращающая его сила, благодаря которой он начинает вращаться и передавать своё вращение связанным с ним устройствам.
Двигатели этого типа просты по конструкции, неприхотливы в обслуживании, надёжны в эксплуатации. Основными недостатками являются большие пусковые токи и сложности в регулировании скорости вращения.
Реверсивная схема подключения асинхронного двигателя с пусковой обмоткой
ФОТО: elektt.blogspot.com
Коллекторный
У коллекторных двигателей обмотки расположены и на статоре, и на роторе. Ток к ротору подводится через устройство, под названием «коллектор», которое состоит из ламелей, закреплённых на валу ротора, и двух неподвижных относительно статора «щёток».
Схема подключения коллекторного двигателя
ФОТО: elektt.blogspot.com
Коллекторный двигатель работает и от переменного, и от постоянного тока. Здесь легко регулировать обороты изменением величины питающего напряжения. В качестве промышленного устройства можно использовать подходящий по мощности диммер от системы освещения.
Инверторный
Инверторный двигатель в стиральной машине является наиболее современным решением. Принцип работы в том, что во встроенном инверторе переменный ток электрической сети преобразуется в постоянный, а потом снова в переменный ток нужной частоты, которая и определяет скорость вращения вала. Он, в отличие от коллекторного, не имеет щёток и издаёт меньше шума. Нет щёток – нет изнашивающихся деталей, поэтому регулярно заменять ничего не надо. Но за инвертор нужно платить, такая машина стоит дороже.
Отличия электродвигателей
Различия электродвигателей по типам даны в их описаниях. Асинхронный двигатель самый простой по конструкции. У коллекторного имеется возможность легко регулировать скорость вращения. А инверторный двигатель напрямую без ремней и шестерёнок соединяется с валом барабана. Если коротко, то более современные моторы меньше шумят, подвергаются регулированию оборотов, но стоят дороже.
Подключение двигателя современной стиральной машины автомат к сети 220 В
Схема подключения двигателя стиральной машины
У новых стиральных машин «автомат» главный двигатель коллекторного типа. Это значит, что у него имеется двухкатушечная обмотка на статоре и обмотка возбуждения на роторе. Ротор и статор включены последовательно. Ток в обмотку возбуждения поступает через щётки. Электрическая схема подключения двигателя к сети та же самая, что и на №5.
Регулятор оборотов
Регулятор оборотов можно применить любой стандартный мощностью 2,5–3,0 кВт. Также можно использовать осветительный диммер, но в нём предварительно необходимо заменить симистор на BT138X-600 или BTA20-600BW или другую модель с десятикратным превышением тока потребления двигателя.
Чтобы избежать падения оборотов под нагрузкой, применяются специальные устройства на интегральной микросхеме TDA1085, управляющие током и напряжением на двигателе.
Регулятор оборотов двигателя
ФОТО: electrik.info
Если обороты двигателя надо понижать существенно, то с нагрузкой его следует соединять через ремённую передачу или редуктор.
Как подключить двигатель от стиральной машины
При подключении двигателя, извлечённого из стиральной машины, необходимо удалить лишние провода. При работе следует руководствоваться рисунками 7 и 8, внимательно контролируя цвет проводов.
Подключение двигателя к сети с учётом цвета проводов
ФОТО: sdelaysam-svoimirukami.ru
Подключение двигателя старой стиральной машины
У старых стиральных машин двигатели асинхронного типа с двумя обмотками – пусковой и рабочей. У пусковой обмотки выше омическое сопротивление. Если найдены выходные провода от обеих обмоток, и обе обмотки целые, то двигатель можно подключать
Схема подключения мотора от стиральной машины
Имеется два варианта подключения двигателя – с конденсатором, рассчитанным на напряжение 450-600 В, ёмкостью от 4 до 8 мкФ и с кнопкой кратковременного включения.
Схема подключения двигателя старой машины с кратковременным контактом
ФОТО: zen.yandex.ru
Как подключить двигатель
Для подключения двигателя, первым делом необходимо определить пары проводов от обеих обмоток. После этого принять решение о схеме подключения – с конденсатором или с кнопкой. Собрать схему и выполнить пробное включение. Если двигатель крутится не в ту сторону, которая нужна владельцу, то следует поменять местами точки подключения пусковой обмотки.
Дополнительные рекомендации для работы
При работе с электричеством следует неукоснительно соблюдать правила электробезопасности, внимательно следить за оголёнными концами проводов, чтобы не допустить случайного короткого замыкания. И не прикасаться к оголённым проводам.
Что делать, если мотор не запускается
Если мотор, извлечённый из машины, не запускается, то причины могут быть как механического, так и электрического характера.
Если включённый мотор не крутится, но греется, его надо быстро выключить и попытаться провернуть рукой. Если раздаётся скрежет, то следует проверить подшипники, они могли разлететься. Тогда их вместе с сальниками следует заменить.
Ещё нужно проверить, не попал ли какой-нибудь мусор в промежуток между ротором и статором.
Если механических причин не обнаружено, то следует прозвонить электрические цепи – нет ли где обрыва. В коллекторных двигателях следует проверить износ щёток и плотность их прижима к поверхности коллектора. Щётки при длительной эксплуатации изнашиваются, их надо вовремя менять.