Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реверсивный пуск асинхронного трехфазного электродвигателя

Реверсивный пуск асинхронного трехфазного электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

В процессе эксплуатации трехфазного асинхронного электродвигателя может возникнуть ситуация, когда требуется поменять направление вращения вала.

Процесс реверсивного пуска электродвигателя

Реверсивный пуск трехфазного асинхронного электродвигателя осуществляется посредством предварительной остановки. То есть сначала следует отключить вращающийся двигатель, после чего нужно дождаться полной его остановки. Лишь после остановки двигателя следует включать обратное вращение. В таком случае пускатель управляет электродвигателем. Мощность пускателя при включении реверса должна быть в 1,5–2 раза больше, чем максимальная коммутационная мощность пускателя. Это во многом зависит от состояния контактов, их устойчивости к износу. В таком режиме пускатель работает без механической блокировки.

Особенности магнитных пускателей реверсивного пуска

Для осуществления реверсивного пуска применяют специальные пускатели. Магнитные пускатели для реверса электродвигателя — это обычные пускатели, которые укреплены на основании двигателя и посредством электрических соединений обеспечивают электрическую блокировку. Она осуществляется посредством нормально-замкнутых блокировочных контактов, которые есть на пускателях, предотвращающих возможность включения одного пускателя при включенном состоянии другого.

При включении реверсивного магнитного пускателя предусматривается нулевая защита, реализуемая с помощью нормально-открытого контакта пускателя, который предотвращает случайное его включение при возникновении напряжения.

Некоторые реверсивные пускатели также оснащаются блокировкой, располагающейся на основании. Она также необходима, чтобы предотвращать возможное одновременное включение пускателей. Следует отметить, что нормальная электрическая блокировка позволяет отказаться от механической.

Тепловые реле и защита от пыли и влаги

Часто магнитные пускатели имеют защиту от пыли и брызг. Такие варианты оснащаются оболочкой в виде резиновых уплотнений, которая не допускает попадания внутрь прибора пыли и влаги.

Некоторые пускатели имеют также тепловые реле. Они необходимы для обеспечения тепловой защиты электродвигателя от перегрузок, которые длятся недопустимое для данной конструкции время. Тепловые реле защищают трехфазный асинхронный двигатель при обрыве фазы питающего напряжения и при токовой перегрузке большой продолжительности.

Монтаж магнитных пускателей асинхронных электродвигателей

Монтаж магнитных пускателей должен происходить на жесткой, хорошо укрепленной вертикальной поверхности. При наличии теплового реле такие конструкции следует монтировать таким образом, чтобы разность температуры воздуха, который окружает пускатель и электродвигатель, была наименьшей.

Для недопущения случайных срабатываний очень важно не ставить пускатели в тех местах, которые подвержены резким толчкам, ударам и тряске. Важно также, чтобы пускатели не были установлены рядом с приборами, которые отличаются большим тепловыделением.

Перед началом использования магнитного пускателя производится наружный осмотр приборов, для того чтобы убедиться в том, что все его части исправны. Также следует проверить номинальное напряжение, которое подается на катушку. Во включенном состоянии допускается небольшое характерное гудение электромагнита.

Уход за магнитными пускателями в процессе эксплуатации

Уход за магнитными пускателями в процессе эксплуатации в первую очередь подразумевает их защиту от попаданий влаги, пыли и грязи. Следует контролировать, чтобы винты контактных зажимов всегда были затянуты. Время от времени нужно проверять состояние контактов. В случае их оплавления последующая зачистка может значительно уменьшить время эксплуатации всего прибора.

Срок службы пускателя во многом зависит от тех условий, в которых он работает, — чем реже им пользуются и чем менее агрессивна окружающая его среда, тем ниже вероятность его поломки.

Магнитный пускатель

Пуска́тель электромагни́тный (магни́тный пускатель) — низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска электродвигателя, обеспечения его непрерывной работы, отключения питания, защиты электродвигателя и подключенных цепей, и иногда для реверсирования направления его вращения.

Пускатель обычно представляет собой модифицированный контактор, он может быть укомплектован дополнительными устройствами, такими как: 1.Тепловое реле для аварийного отключения двигателя; 2.Дополнительной слаботочной контактной группой или группами, используемыми в цепях управления; 3.Или кнопкой пуска. Иногда пускатели снабжаются устройством аварийного отключения при выпадении (обрыве) одной из фаз трёхфазной сети питания трёхфазных электродвигателей.

Содержание

  • 1 Устройство и применение
  • 2 Литература
  • 3 Примечания
  • 4 Ссылки

Устройство и применение [ править | править код ]

Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию переключения направления вращения его ротора (т. н. реверсивная схема), путём изменения порядка следования фаз, для чего в пускатель встраивается второй контактор.

Для уменьшения пускового тока двигателя также применяется переключение обмоток трёхфазного двигателя со «звезды» на «треугольник». При такой схеме включения двигатель разгоняется до номинальных оборотов будучи включённым по схеме «звезда» и переключается на питание по схеме «треугольник» в нормальном режиме работы.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; со встроенной тепловой защитой электродвигателя от перегрузки и без неё.

Реверсивный магнитный пускатель (реверсивная сборка) осуществляет реверсирование трёхфазных двигателей путём изменения чередования фаз и представляет собой два трёхполюсных контактора, смонтированных в общем устройстве и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов, что вызывает короткое межфазное замыкание.

Магнитный пускатель, контактор или реле имеют силовые и блокировочные контакты. Силовые используются для коммутации мощной нагрузки; блок-контакты — в управляющей цепи. Силовой и блок-контакт может быть нормально разомкнутыми и нормально замкнутыми. Нормально открытый контакт в нормальном положении контактора разомкнут. Нормально закрытый контакт в нормальном положении контактора замкнут. Контакты контактора, пускателя или реле на принципиальных схемах показываются в нормальном положении [1] .

Читать еще:  Что обозначает чек двигателя

На территории СНГ некоторые производители электрооборудования в каталогах и списках оборудования не акцентируют различие между контакторами и магнитными пускателями.

Модульный контактор (для установки на DIN-рейку) — это электромагнитный пускатель, сконструированный для установки в электрические распределительные щиты для стандартных модульных устройств с креплением на DIN-рейку. Их достоинства: электробезопасность класса 2 — постоянная безопасность для операторов и неквалифицированного персонала. Недостатки: максимальное число коммутационных операций в день до 100.

Величины магнитных пускателей — для того, чтобы обеспечить приличную работу электроприборов в тех цепях, что коммутируется пускателями, требуется, чтобы характеристики последних целиком соответствовали эксплуатационным условиям. Насчитывается восемь параметров этой самой величины и каждая из них подразумевает свой параметр нагрузочного тока. Допускается небольшое несоответствие (в большую сторону) по допустимому значению тока. Выражение «величина» является условным термином, обозначающим то, какой ток может пропустить через главные рабочие контакты выбранный магнитный пускатель. При присвоении величины считается, что пускатель работает при напряжении 380 В, а его рабочий режим АС-3.

Список различий приборов по их величинам (токи в зависимости от величин):

  • 0 – 6,3 А;
  • 1 – 10 А;
  • 2 – 25 А;
  • 3 – 40 А;
  • 4 – 63 А;
  • 5 – 100 А;
  • 6 – 160 А;
  • 7 – 250 А.

Схемы пуска электродвигателя на языке лестничных диаграмм LD для ПЛК

Этой статьей мы начинаем цикл материалов по обучению созданию программ для программируемых логических контроллеров (ПЛК) в среде CodeSys. Лучше всего изучать способы программирования ПЛК на реальных практических примерах.

Рассмотрим несколько простых программ, которые можно использовать для управления асинхронными двигателями с короткозамкнутым ротором. Для создания программ будем использовать язык лестничных диаграмм LD в CodeSys.

Всего рассмотрим 4 программы для 4-х схем:

1. Схема включения и выключения двигателя;

2. Схема управления реверсивным двигателем с использованием промежуточной копки «Стоп»;

3. Схема управления реверсивным двигателем без использования промежуточной копки «Стоп»;

4. Схема управления реверсивным двигателем c использованием путевых выключателей.

Приведенные ниже примеры имеют прежде всего учебную цель, т.к. для таких простых схем применять ПЛК нецелесообразно.

Язык лестничных диаграмм (Ladder Diagram , LD) в русскоязычной документации к ПЛК часто называется языком релейно-контактных схем (РКС). Этот графический язык был придуман в 70-х годах XX века и в первую очередь он был создан для электриков, которым в то время приходилось модернизировать релейно-контактные схемы с дискретными аппаратами (реле, таймерами, счетчиками и т.п.) в схемы с использованием программируемых контроллеров. Он был длительное время лидером по популярности среди всех МЭКовских языков программирования ПЛК.

Язык LD (РКС) почти полностью повторяет логику работы релейно-контактных электрических схем. Слева и справа находятся вертикальные цепи, которые считаются шинами питания. Между ними располагаются горизонтальные цепи, в каждой из которых слева находятся различные нормально разомкнутые и нормально замкнутые контакты, а в правой части – обмотки (катушки).

Каждому контакту соответствует своя логическая переменная (ON или OF), которые передают на катушку булевое состояние «Истина» или «Ложь». В первом случае катушка получает значение «включено» (ON), во втором – «отключено» (OFF).

На этом языке достаточно легко можно создавать сложные цепи включая в них различные функциональные блоки (триггеры, таймеры, счетчики и др.), что позволяет использовать этот язык для решения почти любых, даже очень сложных задач.

Схема включения и выключения двигателя

Первый вариант программы полностью повторяет самую распространенную схему с использованием двух кнопок и электромагнитного пускателя.

Кнопка «пуск» (B1) при нажатии подает значение логической единицы («Истина») через замкнутый контакт кнопки «стоп» (B2) на обмотку (К1). Контакт обмотки, подключенный параллельно к контакту первой кнопки включается и создает блокировочную цепь, которая питает обмотку при отпускании кнопки «пуск».

Эту схему можно упростить используя катушки «Set» и «Reset» (аналог триггера RS). Это очень часто используемые компоненты языка LD. В программах они предназначены для запоминания состояния включения и выключения электродвигателя или любого другого выходного элемента. Кроме управления электродвигателями другими исполнительными механизмами катушки «Set/Reset» часто используется для отслеживания деталей на станке.

Так как язык LD разработан на основе работы устройств релейно-контактной логики, то катушки «Set» и «Reset» имеют свой физический прототип реле в прошлом – так называемые «реле блокировки». Их часто использовали для запоминания состояния работы объекта управления при отключении электроэнергии.

Это были реле с двумя катушками установки и сброса. Когда подавали питание на установочную катушку, она смещала внутренний механизм в положение «включено» и это положение поддерживалось механически с помощью защелки.

Подача питания на катушку сброса приводило к смещению внутреннего механизма в положение «выключено». Если ни одна из катушек не была под напряжением, реле оставалось бы в своем последнем положении. Отсюда и название – «реле блокировки».

В приведенной ниже программе при подаче импульсного сигнала на катушку «Set» она срабатывает и остается во включенном состоянии пока не будет подан импульсный сигнал на катушку «Reset».

Читать еще:  Что означает двигатель vtec

В этой схеме если одновременно нажаты две кнопки (активны оба режима «Set» и «Reset»), то катушка будет отключена. Можно также изменить логику и поменять приоритетность режимов «Set» и «Reset». В данном случае при одновременном нажатии двух кнопок катушка останется во включенном состоянии.

Схема в режиме эмуляции:

Для включения режима эмуляции в CodeSys нужно в пункте меню «Онлайн» поставить галочку «Режим эмуляции», затем «Старт» (F5) и установив нужные значения контактов записать эти значения в контроллер, в данном случае виртуальный нажав «Ctrl+F7».

Реверсивные схемы включения и выключения двигателя

Теперь перейдем к схемам управления реверсивным электродвигателем с короткозамкнутым ротором. Приведенная ниже программа позволяет производить реверс электродвигателя с помощью кнопок «Вперед» (B2) и «Назад» (B3) после нажатия промежуточной кнопки «Стоп» (B1) перед каждым изменением направления вращения.

Блокировочные нормально-замкнутые контакты K1 и K2 обеспечивают невозможность включения электродвигателя на короткое замыкание при одновременном нажатии кнопок «Вперед» и «Назад».

Любые дополнительные блокировочные контакты включаются последовательно с катушками, например в программе это контакты теплового реле КК.

HL1 и HL2 – катушки, отвечающие за включение сигнальных ламп. По ним можно определить когда в какую сторону вращается электродвигатель.

Часто для управления электродвигателем используется программа, которая повторяет релейно-контактную схему с использованием двух спаренных контактов на кнопках. Такая схема позволяет изменять направление вращения электродвигателя без использования промежуточной кнопки «Стоп». Эта кнопка используется только в случае полной остановки электродвигателя.

Пример такой схемы на LD в CodeSys:

Все приведенные выше программы на языке LD довольно просты и очень хорошо воспринимаются электриками. В заключение приведем более сложную программу с использованием таймеров (программные аналоги реле времени).

Эта программа позволяет управлять автоматическим движением реверсивного электродвигателя между двумя точками с выдержкой на упорах. После нажатия на кнопку «Пуск» (B2) механизм, управляемый электродвигателем перемещается из точки А в точку Б. Там он на 10 секунд останавливается и начинает движение в обратную сторону. В точке А новая остановка на 10 секунд и обратное движение в точку Б.

Управление движением осуществляется с помощью двух путевых выключателей (SQ1 и SQ2), а выдержки времени на упорах обеспечиваются с помощью двух таймеров TON. Про виды таймеров CodeSys и особенности их использования в программах мы расскажем в одной из следующих статей, посвященных обучению программированию ПЛК.

Structured Text

#2 — Structured Text // Создадим копию таймера TON и добавим к нему память. Автор — Сергей Романов

Книга «Изучаем Structured Text МЭК 61131-3»: Ссылка на книгу

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Подключение реверсивного магнитного пускателя

Реверсивный пускатель часто встречается в оборудовании, обеспечивающем работу механизмов и агрегатов, в которых есть функциональное назначение изменения вращения вала электрического двигателя. Схема подключения магнитного пускателя с реверсивным пуском электродвигателя всегда является предметом изучения электриков-любителей и профессионалов для создания собственных конструкций.

В промышленности существует два вида магнитных пускателей: для прямого пуска асинхронного электродвигателя, а также для реверсного пуска электрического двигателя.

Нереверсивное подключение электродвигателя

Специалисты для лучшего понимания реверсного пуска электродвигателя предлагают рассмотреть, как работает нереверсивная схема включения электрического двигателя. В конкретном примере рассматривается пускатель с катушкой управления 220 вольт. Электродвигатель подключается к цепи по следующей цепочке:

  • автоматический трехфазный выключатель;
  • силовые клеммы пускателя (КМ);
  • тепловое реле (ТР).

Катушка управления пускателя (КМ) с одной стороны подключена к рабочему нулю, а другая сторона через цепочку кнопок управления «Пуск» и «Стоп» — к фазе цепи.

Пост управления (КМ) имеет две кнопки: «Пуск» и «Стоп»:

  • у кнопки «Пуск» контакты нормально разомкнутого вида;
  • у кнопки «Стоп» контакты нормально замкнутого вида.

Нормально разомкнутый контакт катушки управления включается параллельно пусковой кнопке. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы. Контакт нормально замкнутый (ТР) включается в цепь катушки управления (КМ).

После включения автоматического трехфазного выключателя напряжение поступает на силовые контакты пускателя и в управляющую цепь катушки — схема приведена в рабочее состояние.

Нереверсивный запуск

Для осуществления пуска электрического двигателя оператору необходимо нажать кнопку «Пуск», тогда в управляющую цепь катушки поступает напряжение, цепь замыкается и срабатывает, втягивая якорь с одновременным замыканием шунтирующего контакта катушки управления. Силовые контакты электрического двигателя получают питание, он начинает вращаться.

Читать еще:  N55 bmw двигатель характеристики

Когда оператор отпускает кнопку «Пуск», обмотка (КМ) получает питание от его вспомогательного контакта, двигатель работает.

Остановка

Оператору для остановки нереверсивного двигателя надо нажать кнопку «Стоп», в этом случае происходит разрыв питания катушки управления (КМ), шунтирующий контакт размыкается, якорь катушки приходит в начальное положение, тем самым размыкая силовые контакты. На электродвигателе пропадает напряжение, он останавливается.

Кода отпускается кнопка «Стоп», контакт управляющей обмотки остается разомкнутым, ожидая следующего пуска электросхемы.

Как происходит защита двигателя при нереверсивном пуске

Защита электрического двигателя реализуется при помощи биметаллических контактов (ТР), они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Все контакты пускателя (КМ) возвращаются в начальное положение, а двигатель останавливается. Ниже представлена принципиальная схема подключенного электродвигателя с защитой.

В схеме защиты работы электрического двигателя предусматривается дополнительная защита управления пуском и остановкой механизма, это включение в цепь предохранителя, который реагирует на межвитковое замыкание катушки управления пускателя (КМ).

Устройство магнитного пускателя для реверсного пуска

Реверсивный магнитный пускатель имеет функциональное назначение — запуск электрического двигателя, а также других механизмов, у которых есть функциональное назначение работы в прямом и обратном направлении с изменением вращения вала двигателя. Пускатель выполняет коммутационную функцию силовыми контактами и подачу напряжения на двигатель.

В отличие от контакторов пускатель используется как защита при частых пусках и остановках механизмов и устройств. Пускатели марки ПМЛ широко применяются в схемах реверса трехфазного двигателя для реализации дистанционного пуска в насосных станциях, в башенных кранах и вентиляционных системах, в других механизмах.

Магнитный пускатель в своей конструкции имеет следующие функциональные составляющие:

  • электромагнитная часть с катушкой и подвижным якорем, нормально разомкнутый магнитопровод;
  • главные силовые контакты, назначение которых — соединение и отключение фаз электродвигателя при пуске и остановке. Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря (КМ);
  • блок-контакты функционально предназначены для коммутации цепи управления;
  • переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления (КМ) возвращает в начальное положение, размыкая все контакты.

Как подключается реверсивный пускатель

Схема подключения реверсивного магнитного пускателя необходима для работы электрического двигателя в прямом, а также в обратном направлении. Подключить этот вид пускового устройства для специалиста не составит труда. Очень часто в промышленности реверсивное подключение используется для работы станочного оборудования разного вида (сверлильный, токарный станок и др.). Реверсивная схема реализуется в работе лифтов не бытового назначения.

Реверсивные пускатели имеют отличие в подключении, это дополнительная цепочка управления, а также разница соединения силовой части. В схеме реализована защита от короткого замыкания, это контакты КМ1.2 и КМ2.2, которые имеют нормально замкнутый вид и размещены на пускателях КМ1 и КМ2. Реверсивная схема, представленная на фото, имеет цветовое отличие силовой и управляющей цепей:

Как происходит включение

Схему реверса асинхронного двигателя можно образно разбить на этапы включения: выключатель (QF1) переводим в рабочее положение, в этом случае все реверсивные магнитные пускатели на силовых контактах получают напряжения КМ1 и КМ2 и остаются в таком положении.

Одна фаза задействована в цепи управления обмоток пускателей, ее прохождение:

  • защитный автомат (SF1) — кнопка «Стоп» (SB1) — контактная группа №3 (функционируют с кнопками (SB2) и (SB3);
  • контакт 1ЗНО в пускателях КМ1 и КМ2 становится в ожидание — у него дежурное значение;
  • пускатель реверсивный готов к работе.

Как происходит переключение

Схема реверса электродвигателя предусматривает следующие манипуляции в пускателе: когда оператор нажимает кнопку SB2, он дает питание управления катушкой пускателя (КМ1), далее срабатывают нормально разомкнутые контакты и размыкаются нормально замкнутые контакты в конфигурации КМ1, катушка обеспечивает «подпитку», и питание через силовые контакты поступает на мотор, он начинает вращение.

Если возникла рабочая необходимость сделать реверс электродвигателя, оператору надо поменять приложение силовых контактов (фаз), это реализуется при помощи КМ2. Важно! Всегда, когда делается подключение двигателя для обратного вращения, должна происходить его остановка, это достигается отключением в управлении обмотки КМ1 фазы №1, контакты пускателя занимают начальное положение, электродвигатель обесточен.

Оператор, нажимая кнопку SB3, подает питание на управление обмоткой КМ2, а оно изменяет включение силовых контактов «фаза №2» и «фаза №3» для подключения трехфазного электродвигателя. Он начинает вращение в другом направлении до тех пор, пока не произойдет размыкание контактов управления обмоткой.

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить. Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения. В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Ссылка на основную публикацию
Adblock
detector