Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контроль качества электроэнергии на предприятиях с большим количеством асинхронных двигателей

Контроль качества электроэнергии на предприятиях с большим количеством асинхронных двигателей

Сегодня трудно представить себе наш мир без электрического двигателя. Разнообразие двигателей очень широко: от мощных и дорогостоящих высоковольтных асинхронных двигателей, которые приводят в движение крупные установки (вентиляторы, насосы, дробилки), до небольших двигателей, которые можно встретить в домашних хозяйствах (мясорубки, комбайны, стиральные машины). Электрический двигатель является также одним из самых популярных потребителей энергии среди всех электроустановок.

Наиболее распространённый тип используемого двигателя — трёхфазный асинхронный двигатель; более 80% всех двигателей в промышленности являются асинхронными. Одна из причин высокой популярности асинхронных двигателей — их надёжность, но они также могут преждевременно выйти из строя по причине перегрузки, неправильного режима эксплуатации, несвоевременного контроля за смазкой подшипников. Все указанные проблемы имеют общий корень — температура, перегрев частей асинхронного двигателя и, как следствие, ускоренный выход из строя.

Стационарно установленный измерительный прибор SATEC РМ175 или другой подобный МИП может обеспечить получение важной информации об условиях работы асинхронного двигателя. Контролируя напряжение, ток, мощность и температуру (с помощью аналоговых входов прибора), мы можем получать данные по многим аспектам работы асинхронного двигателя, в том числе:

Качество напряжения на клеммах двигателя

Потребляемая мощность (энергия)

Каждый из этих параметров имеет важное значение, однако мы остановимся на выявлении проблем, связанных с контролем качества напряжения, что, в итоге, позволяет увеличить срок службы асинхронного двигателя.

Качество напряжения на клеммах двигателя зависит от многих факторов. Отклонения от нормальных значений ПКЭ могут снизить срок службы асинхронных двигателей. Все ПКЭ можно разделить на семь категорий, которые могут повлиять на работу асинхронных двигателей:

Несимметрия по напряжению

Пониженное напряжение и перенапряжение

Асинхронный двигатель предназначен для работы в узком диапазоне номинальных напряжений (как правило, ± 10% от номинального значения). При полной нагрузке повышенное более, чем на 10% напряжение на контактах двигателя приводит к существенному увеличению потерь в сердечнике электродвигателя в результате перегрева. Низкое напряжение на клеммах полностью загруженного двигателя также приводит к дополнительному нагреву из-за повышенного тока двигателя.

Несимметрия питающего напряжения

Несимметрия напряжения — одна из самых серьёзных угроз для нормальной работы асинхронного двигателя. На рис.1 представлена зависимость между снижением эффективности работы электродвигателя и несимметрией по напряжению. Несимметрия тока приводит к дополнительным потерям в двигателе и повышению температуры частей двигателя. На рис. 2 показана зависимость между несимметрией по напряжению и ростом температуры двигателя. Повышенный нагрев сокращает срок службы изоляции двигателя и, ка следствие, сокращает срок службы самого двигателя.

Рис. 1. Уменьшение мощности электродвигателя из-за несимметрии напряжения

Рис. 2. Связь между несимметрией по напряжению и ростом температуры двигателя

Гармонические искажения

В двигателях гармоники напряжения и тока приводят к появлению добавочных потерь в обмотках ротора, в цепях статора, а также в стали статора и ротора. Из-за вихревых токов и поверхностного эффекта (SKIN EFFECT) потери в проводниках статора и ротора больше, чем определяемые омическим сопротивлением. Токи утечки, вызываемые гармониками в торцевых зонах статора и ротора, также приводят к дополнительным потерям. Всё это приводит к повышению общей температуры машины и к местным перегревам, наиболее вероятным в роторе, что может привести к аварийным последствиям. Также следует отметить, что при определённых условиях наложения гармоник может возникнуть механическая вибрация ротора, что приводит к разбиванию подшипников двигателя.

Гармоники напряжения можно разложить на положительную, отрицательную и нулевую последовательности (Symmetrical Components). Положительные последовательности приводят к появлению дополнительного крутящего момента в том же направлении, что и вращение двигателя. Отрицательная последовательность вызывает крутящий момент в противоположном направлении, что также приводит к дополнительным потерям электроэнергии (см. Таб. 1).

Номер гармоники Симметричные составляющие
1-яПоложительная
2-яОтрицательная
3-яНулевая
4-яПоложительная
5-яОтрицательная
6-яНулевая
7-яПоложительная
8-яОтрицательная
9-яНулевая

Транзиентные перенапряжения

Транзиентные напряжения приводят к ускоренному старению изоляции. Как правило, в результате мы видим пробой изоляции и выгорание первого или второго витка обмотки.

Способность прибора SATEC регистрировать кратковременные пики напряжения (20 мск) является жизненно важным для надёжной работы двигателя. Обнаружение таких коротких процессов требует большой скорости работы АЦП прибора. Для того чтобы свести к минимуму эффект фильтрации перенапряжения подводящими линиями, напряжение должно контролироваться вблизи к клеммам двигателя.

Контроль качества электроэнергии на объектах с большим числом электродвигателей позволяет контролировать все режимы работы и, таким образом, значительно продлить срок службы оборудования. Прибор SATEC PM180 также позволяет регистрировать и осциллографировать и пусковые токи двигателей, и различные перегрузки, которые могут появляться в процессе работы привода и механизма.

Электродвигатели в Ростове-на-Дону

Популярные электродвигатели

АИР112МA6 (АДМ112МA6)

АИР56А2 (АДММ56А2)

АИР71А2 (АДМ71А2)

АИР90LА8 (АДМ90LА8)

Электродвигатель благодаря простоте конструкции и обслуживания, универсальности и дешевизне широко применятся в промышленности и быту.

Он работает за счет электромагнитной индукции и представляет собой агрегат, состоящий из двух основных частей – неподвижной (статора) и подвижной (ротора).
Продажа электродвигателей в Ростове-на-Дону осуществляется компанией «Насосэнергомаш».

Устройство и назначение

Электроцепь статора проводит ток, который генерирует магнитное поле. Оно вращает ротор. Таким образом электроэнергия превращается в кинетическую и заставляет работать прочие узлы и механизмы.

Электрические двигатели классифицируют по некоторым другим признакам:

  • электродвигатели общепромышленные;
  • постоянного тока;
  • спецназначения;
  • многоскоростные;
  • с дополняющим устройством (тормозом и пр.);
  • взрывозащищенные (шахтные) и др.

Однофазные асинхронные моторы работают от сети 220 В и 50 Гц, их мощность начинается от 0,12 кВт (это ключевые технические характеристики электродвигателей).

Трехфазные асинхронные устройства более совершенные, надежные, мощные (от 0,18 кВт), простые и при этом доступные. Это самый встречающийся в мире тип электродвигателей – до 90% приходится именно на него. Напряжение у них 220/380 В. Однофазные также гораздо слабее трехфазных с точки зрения способности выдерживать перегрузки, не следует передерживать их на холостом ходу.

Читать еще:  Что такое доховский двигатель

Кроме того, характеристики электродвигателя могут включать приспособленность к тем или иным условиям эксплуатации, например, есть специальные модели для тропического или холодного климата, высокой влажности, с защитой от пыли, агрессивных химических сред и т.д. Способ монтажа – еще одно качество, которое позволяет выделить устройства в отдельные группы. Подбор электродвигателя, учитывающий специфику приводного механизма, условия работы и окружающей среды, определяет длительность безаварийной работы и надежность системы «двигатель – нагрузка»

Условные обозначения

Серия (тип) электрического двигателя:

  • АИ — пометка серии электродвигателей, распространенных во многих сферах;
  • Р, С (АИР и АИС) — отношение мощности к установочным размерам;
  • АИР (А, 5А, 4А, АД) — агрегаты, производимые по ГОСТ;
  • АИС (6А, IMM, RA) — производство по евростандарту DIN (CENELEC).
  • ВА, АВ, AИМ, АИМР — и др. взрывозащищенные
  • АИУ, ВРА, ВРП, АВР — взрывозащищенные рудничного исполнения
  • М — модернизированный: АИРМ, 5АМ
  • Н — защищенного исполнения с самостоятельной вентиляцией: 5АН
  • Ф — защищенного исполнения с охлаждением в принудительном порядке: 5АФ
  • К — с фазным ротором: 5АНК
  • С — с повышенным скольжением: АИРС, АС, 4АС, 5АС, АДМС и др.
  • Е — однофазные 220V: АИРЕ, АДМЕ, 5АЕУ
  • В — встраиваемые: АИРВ

Длина сердечника и/или станины:

  • А, В, С — длина сердечника (первая-третья длина);
  • XK, X, YK, Y — длина сердечника статора двигателей высоковольтных;
  • S, L, М — установочные размеры по длине станины.

Количество полюсов электродвигателя разное: 2, 4, 6, 8, 10, 12, 4/2 и др.

У конструктивных модификаций электрических двигателей есть буквенное обозначение:

  • Е — вмонтирован электромагнитный тормоз: АИР 100L6 Е У3
  • Е2 — электромагнитный тормоз вмонтирован вместе и ручкой расторможения: АИР 100L6 Е2 У3
  • Б — с датчиком защиты от недопустимых температур (встроен): АИР 180М4 БУ3
  • Ж — выходной конец вала специального назначения, предназначенный для моноблочных насосных установок: АИР 80В2 ЖУ2
  • П — агрегат высокой точности по заданным размерам: АИР 180М4 ПУ3
  • Р3 — электродвигатель для мотор-редукторов АИР 100L6 Р3
  • С — электрический двигатель для станков-качалок: АИР 180М8 СНБУ1
  • Н — агрегат малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4
  • Л — электрический двигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Климатическое исполнение (ГОСТ 15150-69):

  • У — умеренный климат
  • Т — тропики
  • УХЛ — умеренно холодный климат
  • ХЛ — холодный климат
  • ОМ — для судов морского флота
  • Категория размещения:
  • 5 — в комнатах с высокой влажностью
  • 4 — в комнатах, где климат регулируется самим человеком
  • 3 — в замкнутом пространстве
  • 2 — на открытой территории, с защитой от снега и дождя
  • 1 — в незамкнутом пространстве

Степень защиты электрического двигателя (характеристики по IP, ГОСТ 17494-87):

Первая цифра в таблице: защита от твердых предметов

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 36 (дополнительный материал). Принцип действия электродвигателя. Электроизмерительные приборы

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Принцип действия электродвигателя.

Электродвигательэто просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Устройство и принцип работы простейшего электродвигателя.

В основе конструкции электрического двигателя лежит эффект, обнаруженный Майклом Фарадеем в 1821 году: что взаимодействие электрического тока и магнита может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Бориса Семеновича Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Однако для широкого использования электродвигателя необходим был источник дешевой электроэнергии — электромагнитный генератор.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором.

Читать еще:  Двигатель fd35 технические характеристики

Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Промышленный электродвигатель

Электроизмерительные приборы.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Группа электромагнитных приборов является наиболее распространенной. Принцип их действия, использованный впервые еще Ф. Кольраушем в 1884 году, основан на перемещении подвижной железной части под влиянием магнитного потока, создаваемого катушкой, по которой пропускается ток. Практическое осуществление этого принципа отличается разнообразием.

Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах, вольтметрах и др.

Устройство прибора магнитоэлектрической системы

Измерительный прибор магнитоэлектрической системы устроен следующим образом.

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О’, к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок).

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что Fm

Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке.

Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.

Дополнительные материалы.

2. Презентация «Электроизмерительные приборы» скачать с Яндекса

Устройство электродвигателя и принцип работы

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент. На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

Читать еще:  Экономика что является основным двигателем

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

  • Cхема и принцип работы электродвигателя .
  • Ремонт электродвигателя своими руками
  • Как проверить электродвигатель .
  • Подбор электродвигателя по параметрам
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]