Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование скорости оборотов двигателя постоянного тока

Регулирование скорости оборотов двигателя постоянного тока

С точки зрения регулирования скоростью вращения электродвигателей, интересно уравнение для электромеханических характеристик, соответствующее Второму закону Кирхгофа:

ω = U/C×Φ – ΥЯ /( C×Φ) 3 ×M

При описании технических характеристик электродвигателя скорость, выражаемая оборотами в минуту, зачастую называется частотой вращения ν по известному соотношению:

ω = 2p/T = 2pn

Поэтому эти две разноименные величины часто применяются в одном и том же смысле. Скорость w (частота ν) находится в прямой зависимости от напряжения питания U и в обратной от магнитного потока Ф. Исходя из приведенной выше формулы, возникает вывод, что скоростью можно управлять, регулируя сопротивление якоря, магнитный поток и напряжение питания.

Методы регулировки

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Заключение

Рассмотренный метод регулировки напряжения сети считается самым эффективным и экономичным вариантом, так как:

  • им обеспечивается широкий диапазон изменения скоростей (wmin / wmax) и лучшие энергетические характеристики (КПД);
  • он работает без каких-либо потерь мощности в силовой цепи якоря.

Управление осуществляется плавно, и по точности регулировка частоты вращения является весьма высокой.

Регулирование частоты вращения асинхронного электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Рисунок 1. Асинхронный двигатель Асинхронный двигатель (рис. 1) имеет неподвижную часть, которая называется статор, и вращающуюся часть, именуемую ротором. Магнитное поле создается в обмотке, размещенной в статоре. Такая конструкция электродвигателя позволяет регулировать частоту его вращения различными способами.

Основные технические характеристики, учитываемые при изменении частоты вращения

При регулировании частоты вращения асинхронных электродвигателей следует учитывать несколько основных технических показателей, которые в значительной мере влияют на процесс работы двигателей.

  1. Диапазон регулирования Д, то есть предел, до которого возможно изменять частоту вращения. Эта характеристика вычисляется по соотношению минимальной и максимальной частоты вращения.
  2. Плавность регулирования — определяется по минимальному скачку частоты вращения электродвигателя, когда осуществляется переход одной механической характеристики на другую.
  3. Направление изменения частоты вращения двигателя (так называемая зона регулирования). Номинальные условия работы определяют естественную механическую характеристику двигателя. Когда осуществляется процесс регулирования частоты вращения, эти характеристики (напряжение и частота питающей сети) начнут изменяться. В результате получаются искусственные характеристики, которые обычно ниже естественных.

Есть несколько способов регулирования частоты вращения электродвигателя:

Регулирование частоты вращения изменением частоты питающей сети

Регулирование частоты вращения путем изменения частоты в питающей сети считается одним из самых экономичных способов регулирования, который позволяет добиться отличных механических характеристик электропривода. Когда происходит изменение частоты питающей сети, частота вращения магнитного поля также меняется.

Читать еще:  Что такое тип двигателя карбюратор

Преобразование стандартной частоты сети, которая составляет 50 Гц, происходит за счет источника питания. Одновременно с изменением частоты происходит и изменение напряжения, которое необходимо для обеспечения высокой жесткости механических характеристик.

Регулирование частоты вращения позволяет добиться различных режимов работы электродвигателя:

  • с постоянным вращающим моментом;
  • с моментом, который пропорционален квадрату частоты;
  • с постоянной мощностью на валу.

В качестве источника питания для регулирования могут использоваться электромашинные вращающиеся преобразователи, а также статические преобразователи частоты, которые работают на полупроводниковых приборах, серийно выпускающихся промышленностью.

Несомненным преимуществом частотного регулирования является наличие возможности плавно регулировать частоту вращения в обе стороны от естественной характеристики. При регулировании достигается высокая жесткость характеристик и отличная перегрузочная способность.

Регулирование частоты вращения изменением числа полюсов

Регулирование частоты вращения путем изменения числа полюсов происходит за счет изменения частоты вращения магнитного поля статора. Частота питающей сети остается неизменной, в то время как происходит изменение частоты вращения магнитного поля и частоты вращения ротора. Они меняются обратно пропорционально числу полюсов. Например, число полюсов равно 2, 4, 6, 8, тогда обороты двигателя при изменении их количества будут составлять 3000, 1500, 1000, 750 оборотов в минуту.

Двигатели, которые обеспечивают переключение числа пар полюсов, имеют обычно короткозамкнутый ротор с обмоткой. Благодаря этому ротору обеспечивается возможность работы двигателя без дополнительных пересоединений в цепи.

Изменение частоты вращения включением в цепь ротора с реостатом

Еще одним способом изменения частоты вращения двигателя является включение в цепь ротора с реостатом. Такой метод имеет существенное ограничение, так как может быть применен только для двигателей с фазным ротором. Он обеспечивает плавное изменение частоты вращения в очень широких пределах. Минусом же являются большие потери энергии в регулировочном реостате.

Изменение направления вращения

Изменение направления вращения двигателя может быть осуществлено за счет изменения направления вращения магнитного поля, которое создается обмотками статора. Изменение направления вращения можно достичь, изменив порядок чередования тока в фазах обмотки статора.

УСТРОЙСТВО РЕГУЛИРОВАНИЯ ЧАСТОТЫ ВРАЩЕНИЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Изобретение относится к области электротехники и может быть использовано в частотно регулируемых электроприводах (ЧРЭП) в промышленности, бытовой технике и электротранспорте для регулирования числа оборотов асинхронных (однофазных, трехфазных) электродвигателей. Техническим результатом является обеспечение плавного регулирования скорости вращения асинхронного двигателя от минимальных оборотов до максимально возможных оборотов с высоким КПД устройства. Устройство содержит асинхронный электродвигатель (1) с мостовой схемой силовых ключей (2,3,4), маломощный (1 ват) электромотор постоянного тока (5), на роторе которого жестко закреплен постоянный магнит (9). Вокруг электромотора постоянного тока (5) радиально на равном удалении друг от друга (по окружности через 120 градусов) размещены на плате сдвоенные датчики Холла (6, 7, 8). Сдвоенный датчик Холла представляет собой два датчика Холла, расположенных один над другим. Датчики Холла в каждой паре развернуты один относительно другого на 180°. Датчики одновременно попадают под действие магнитного поля и, будучи направленными к магнитному полю разными сторонами, срабатывают по очереди: при изменении магнитного поля изменяется состояние датчиков Холла с открытого на закрытое и наоборот. Датчики Холла управляют ключами трехфазной мостовой схемы (2, 3, 4) через шину управления. Ключи (2, 3, 4) формируют трехфазный переменный ток, который через силовую шину подается на обмотки (L1, L2, L3) трехфазного асинхронного электродвигателя (1). Переменный резистор R в цепи питания электромотора постоянного тока (5) служит для плавной регулировки оборотов электромотора (5), что приводит к изменению частоты переменного тока и, следовательно, к изменению скорости вращения асинхронного электродвигателя. 2 з.п. ф-лы, 2 ил.

1. Устройство регулирования частоты вращения асинхронного электродвигателя, содержащее цепь трехфазного электродвигателя с мостовой схемой силовых ключей, блок управления силовыми ключами, резистор и источник питания, отличающееся тем, что в схему устройства встроен маломощный электромотор постоянного тока, на котором жестко закреплен постоянный магнит, а вокруг электромотора радиально размещены сдвоенные датчики Холла, расположенные на равном расстоянии друг от друга, причем в каждой паре датчики установлены один над другим с разворотом на 180° относительно друг друга и электрически связаны с силовыми ключами, а электромотор постоянного тока связан через резистор с источником питания. 2. Устройство по п.1, отличающееся тем, что мощность электромотора постоянного тока не превышает 1 Вт. 3. Устройство по п.1, отличающееся тем, что расстояние между спаренными датчиками Холла равно 120°.

Изобретение относится к области электротехники и может быть использовано в частотно регулируемых электроприводах (ЧРЭП) в промышленности, бытовой технике и электротранспорте для регулирования числа оборотов асинхронных (однофазных, трехфазных) электродвигателей.

Читать еще:  Двигатель l15a какие свечи

Из уровня техники известны устройства для управления электродвигателем, например патент РФ на ПМ №35929 « Устройство управления электродвигателем», МПК H02P5/00, опубл.10.02.2004, который содержит задающий потенциометр, подключенный к источнику питания, диод, четыре резистора и три транзистора, коллектор первого из которых подключен к источнику питания, а эмиттер – к первому резистору, эмиттер второго транзистора соединен со вторым резистором, дополнительно имеется второй задающий потенциометр, два широтно-импульсных модулятора, два стабилитрона и пятый резистор, подключенный между эмиттером первого силового транзистора и коллектором второго силового транзистора. Недостатком известного устройства является сложность его изготовления, комплектации и использования.

Известно также «Устройство пуска асинхронного электродвигателя с фазным ротором», по патенту на ПМ №55299, МПК H02P5/00, опубл. 27.07.2006, в котором имеется роторная цепь асинхронного электродвигателя с фазным ротором и трехфазным индукционным пусковым реостатом в роторной цепи устройства, содержащего соединенные между собой блок обратной связи, узлы выделения положительной полуволны напряжения на кольцах ротора, формирователи пилообразных напряжений, формирователи управляющих импульсов, источник питания, блок задания напряжений, блок разрешения работы, блок интегрирования и блок тиристоров. Недостатком известного устройства является ограниченность его применения, например, в бытовой технике, на электротранспорте, из-за сложности схемы управления частотой вращения электродвигателя, а также сложность изготовления и комплектования.

Наиболее близким по технической сущности является техническое решение по патенту РФ №2257663 МПК H02P5/40, опубл.27.12.2004. «Устройство управления асинхронным электродвигателем». В устройстве управления асинхронным электродвигателем, содержащем силовые ключи с драйвером управления, системный контроллер, конденсатор со схемой включения, тахогенератор, системный контроллер первой управляющей шиной соединен с входом включения конденсатора, второй, третьей, четвертой и седьмой управляющими шинами — с входами драйвера, восьмой управляющей шиной — с управляющим входом вентилятора. Входами системного контроллера являются входная шина управления и входы разовых команд, шины обратных связей по току, по частоте вращения и температуре, а входом/выходом — шина последовательного интерфейса. Пятая и шестая шины управления драйвера соединены с затворами силовых ключей 3-фазного моста, который шиной обратной связи по току соединен с системным контроллером и драйвером, а шиной обратной связи по температуре — с входом системного контроллера. Недостатком известного устройства также является сложность его изготовления, комплектации и использования.

Сущность изобретения иллюстрируется графическими материалами:

На фиг.1 изображен маломощный электромотор постоянного тока с установленным на его роторе магнитом, сдвоенные датчики Холла, силовые ключи и трехфазный асинхронный электродвигатель.

На фиг.2 изображена мостовая схема силового ключа и его взаимодействие со сдвоенным датчиком Холла.

Таким образом, происходит плавное регулирование скорости вращения асинхронного электродвигателя, напряжение используется с минимальными потерями, т.е. с высоким КПД. Устройство просто в изготовлении, удобно и надежно в использовании, а также имеет возможность применения в любой как бытовой, так и более сложной технике, например в электротранспорте.

Таким образом, задача, стоящая перед изобретением, решена.

Чипгуру

  • Форум
    • Правила форума
    • Правила для Редакторов
    • Правила конкурсов
    • Руководство барахольщика
    • Ликбез по форуму
      • Изменить цвет форума
      • Как вставлять фотографии
      • Как вставлять ссылки
      • Как вставлять видео
      • Как обозначить оффтоп
      • Как цитировать
      • Склеивание сообщений
      • Значки тем
      • Подписка на темы
      • Автоподписка на темы
    • БиБиКоды (BBCode)
    • Полигон для тренировок
  • Калькуляторы
    • Металла
    • Обороты, диаметр, скорость
    • Подбора гидроцилиндров
    • Развертки витка шнека
    • Расчёт треугольника
    • Теплотехнический
    • Усилия гибки
  • Каталоги
    • Подшипников
    • Универсально-сборные пр.
    • УСП-12
  • Справочники
    • Марки стали и сплавы
    • Открытая база ГОСТов
    • Применимость сталей
    • Справочник конструктора
    • Справочник ЧГ сталей
    • Сравнение материалов
    • Стандарты резьбы
  • Таблицы
    • Диаметров под резьбу
    • Конусов Морзе
    • Номеров модульных фрез
  • Ссылки
  • Темы без ответов
  • Активные темы
  • Поиск
  • Наша команда

Регулятор скорости асинхронного двигателя на микроконтроллере

  • Версия для печати

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #1 neoblack » 05 авг 2020, 23:20

Здравствуйте, не может никто подкинуть схему (желательно очень попроще) регулятора скорости асинхронного двигателя 60 ватт с таходатчиком? Пойдет и на анализе тока без тахо, главное чтобы поддерживал скорость на минимуме оборотов и обороты можна было регулировать с помоoью микроконтроллера ардуино, stm32. например через оптопару.
Просто пробовал схему с переменным реизистором на U2010B чето вообще не смог завести нормально, крутиться на максимальных оборотах еле-еле, даже не дошел городить схему управления контроллера.

Регулирует нормально US-52 регулятор, но там слишком много всякой електроники

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #2 AnSm » 05 авг 2020, 23:30

Читать еще:  Шумно работает двигатель в форестере

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #3 neoblack » 05 авг 2020, 23:51

US52 вот его схема внизу. Слишком сложна для повторения. Работает прекрасно во всем положении регулятора, регулируются обороты асинхронника от нуля до максимума. Подключен таходатчик, даже на минимуме не могу затормозить движок рукой. Простым открывание симистора регулируются обороты. Внизу фото регулятора, схема, осциллограмма открывания симистора. Можна сделать такое же попроще и с контролем регулирования скорости контроллером?

Отправлено спустя 5 минут 1 секунду:
Вот двигатель какой. И осциллограмма открывания симистора на контроллере -стандартный диммер с включением симистора и отключением его при переходе через ноль (движок работает очень хреново, очень малая регулировка скорости и вот выставил обороты небольшие, бац движое резко ускоряеться и выходит на максимум).
Чето вообще не могу понять как можна сделать вот такие острые пики отключения симистора, как на регуляторе первая картинка.

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #4 T-Duke » 06 авг 2020, 19:38

Вот ни разу не поверю, что асинхронник вменяемо регулируется этой схемой. Может Вы спутали коллекторный двигатель с асинхронным? Чтобы регулировать асинхронный двигатель, нужно регулировать частоту переменного напряжения, питающего двигатель.
Для регулировки асинхронного привода используются инверторы. Там сетевое напряжение выпрямляется в постоянное, от него питается мост инвертора. Инвертор в свою очередь превращает постоянное напряжение в переменное, но уже регулируемой частоты. Фазоимпульсный регулятор не меняет частоту напряжения питающего двигатель, он только регулирует количество энергии передаваемой в нагрузку за полупериод сетевой синусоиды. Регулировать нагреватель выйдет. Регулировать асинхронник нет.

На фото показан однофазный асинхронник. Чтобы его нормально регулировать, нужно собирать специальный двухфазный инвертор, и выбрасывать конденсатор. А тот фазоимпульсный регулятор что на фото, не пригоден для регулировки асинхронного привода. Нужны гранаты другой системы.

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #5 neoblack » 06 авг 2020, 22:12

Вот ссылка на видео как регулирует обороты. И схема внутри что я дал, могу вскрыть и показать. (да там редуктор, потому и макс скорость такая)
https://photos.app.goo.gl/2dbLNLvK2yedbrAX9

И на осциллограмме вот конкретно импульсы что идут на него

Отправлено спустя 3 минуты 12 секунд:
Да и вот еще одна схема для регулировки оборотов асинхронника, тот же симисторв вкл и выкл, и никаких извращений не нужно. Просто сложные чуть схемы. Мне бы с помощью контроллера как-то

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #6 AnSm » 06 авг 2020, 22:34

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #7 neoblack » 06 авг 2020, 22:46

И как объяснить регулировку оборотов асинхронника на видео? Чудеса?

И на схеме не увидели движок с кондером? и пусковую обмотку тоже не видно? там возле симистора?

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #8 AnSm » 06 авг 2020, 23:10

А кто вам сказал, что там асинхронник? По всем ссылкам, кроме одной, двигатель 5i60rgu стредуктором или без, является регулируемым однофазным двигателем с изменением оборотов от 90 до 1400 с не большим. Что прямо говорит о коллекторном двигателе. Лишь в одном месте не грамотные продаваны, написали что двигатель аснхронный. Ваша ссылка говорит подробно о том же, что я вам и пояснял. Название Однофазный говорит лишь о том, что двигатель питается от однофазной сети, а не о том, что двигатель асинхронный. По регулировке на видео явно коллекторный двигатель.

Отправлено спустя 10 минут 53 секунды:
Поймите, если бы было все так просто с регулировкой скорости асинхронников, никто бы и не стал изобретать частотные преобразователи.

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #9 anker33333 » 07 авг 2020, 12:22

это скорее всего 2-х обмоточный асинхронный с конденсатором
переключением кондёра с одной обмотки на другую меняют направление вращения ( релюхой внутри преобразователя или вовсе перепайкой проводов)
инвертора достаточно и однофазного
но при отсутствии вменяемых требований по моменту и вообще по стабильности работы и так как есть сойдёт , на обратной связи там даже не энкодер а тахогенератор у нас вроде
похожие привода стоят у нас на маркираторных машинах на транспортёрчиках
регулирование -как из ж*пы -ну в смысле непоймикак , но лазер или струйная головка сама отследит когда и где маркировать , там где нужна точность давно выкинули эти привода в помойку и заменили на
3-х фазные инвертора с обычными асинхронниками

Отправлено спустя 5 минут 58 секунд:

Ссылка на основную публикацию
Adblock
detector