Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство современного автомобиля

Устройство современного автомобиля

Современные системы электронного автоматического управления раз­личными всевозможными техническими объектами, а также автомобильными бортовыми устройствами, имеют почти одинаковую похожую структуру.

Принцип работы различных датчиков ЭСАУ примерно одинаковый, — преобразование информации о значениях, которые преобразовываются из неэлектрических параметров в электрический сигнал — напряжение, ток, частоту, фазу и т. д. Полученные сигналы перевоплощаются в цифровой код и поступают в специальный микроконтроллер.

Микроконтроллер на основании значений этих сигналов и в соответствии с заложенным в него программным обеспечением принимает реше­ния, управляет через исполнительные механизмы (реле, соленоиды, электродвига­тели) объектом.

Возможность совершенствования автомобильных электронных систем во мно­гом зависит от наличия надежных, точных и недорогих датчиков.

В 60-х годах автомобили были оборудованы датчиками давления масла, уровня топлива, температуры, охлаждающей жидкости. Их выходы были подключены к стрелочным или ламповым индикаторам на щитке приборов.

В 70-х годах автомобильные компании начали бороться за уменьшение ко­личества токсичных выбросов из глушителя автомобиля — потребовались до­полнительные датчики для управления силовой установкой, которые необходи­мы для обеспечения нормальной работы электронного зажигания, системы впрыска топлива, трехкомпонентного нейтрализатора, для точного задания со­отношения воздух/топливо в рабочей смеси, для минимизации токсичности выхлопных газов.

В 80-х годах начали уделять больше внимания безопасности водителя и пасса­жиров — появились антиблокировочная система торможения (ABS) и воздушные мешки безопасности.

В силовом агрегате (в ДВС) датчики используются для измерения температуры и давления большинства текучих сред (температура всасываемого воздуха, абсо­лютное давление во впускном коллекторе, давление масла, температура охлажда­ющей жидкости, давление топлива в системе впрыска).

Почти ко всем движущимся частям автомобиля подключены датчики скорости или положения (скорость автомобиля, положение дроссельной заслонки, положе­ние коленчатого вала, положение распределительного вала, положение и скорость вращения вала в коробке переключения передач, положение клапана рециркуля­ции выхлопных газов).

Другие датчики определяют уровень детонации, нагрузку двигателя, пропуски воспламенения, содержание кислорода в выхлопных газах.

Есть датчики, которые определяют положение сидений.

В системе управления климатом (в климат-контроле) используются различные датчики в кондиционере для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом.

После появления антиблокировочной системы торможения и активной подвес­ки потребовались датчики для определения скорости вращения колес, высоты ку­зова по отношению к шасси, давления в шинах.

Датчики удара и акселерометры нужны для правильного функционирования фронтальных и боковых воздушных мешков безопасности. Для переднего пасса­жирского сиденья с помощью датчиков определяют наличие пассажира, его вес. Эта информация используется для оптимального наддува мешка безопасности на переднем сиденье. Другие датчики используются для боковых и потолочных воз­душных мешков безопасности, а также специальных воздушных мешков для за­щиты шеи и головы.

На современных автомобилях антиблокировочные системы торможения заме­няются более сложными и эффективными системами управления стабильностью движения автомобиля. Возникает необходимость в новых датчиках. Разрабатыва­ются и уже имеются датчики скорости вращения автомобиля вокруг вертикальной оси, датчики для предупреждения столкновений (например радарные), датчики для определения близости других автомобилей, датчики положения рулевого ко­леса, бокового ускорения, скорости вращения каждого колеса, крутящего момента на валу двигателя и т. д. Управление тормозной системой автомобиля становится частью более общей и эффективной системы электронного управления курсовой устойчивостью и стабильностью движения.

Из сказанного ясно, что сегодня датчики устанавливаются практически во всех системах автомобиля.

На рис. 2.1, а показано наиболее рациональное расположение различных дат­чиков на автомобиле.

Датчики автомобильных электронных систем можно классифицировать по трем признакам: принципу действия, типу энергетического преобразования и ос­новному назначению.

По принципу действия датчики подразделяют на электро контактные, потенци­ометры ческие, оптические, оптоэлектронные, электромагнитные, индуктивные, магниторезистивные, магнитострикционные, фото- и пьезоэлектрические, датчи­ки на эффектах Холла, Доплера, Кармана, Зеебека, Вигоида.

В зависимости от энергетического преобразования (рис. 2.1, б) датчики (Д) бывают активными (поз. 2 на рис. 2.1, б), в которых выходной электрический сигнал (ЭС) возникает как следствие входного неэлектрического воздействия (НВ) без приложения сторонней электрической энергии за счет внутреннего физического эффекта (например фотоэффекта), и пассивными (поз. 3 на рис. 2.1, б), в которых электрический сигнал (ЭС) есть следствие модуляции внешней электрической энергии (ВЭ) управляющим неэлектрическим воздейст­вием (НВ). Например, потенциометрический датчик, показанный па рис. 2.1, б (поз. 5), является пассивным преобразователем угла поворота оси потенциомет­ра (чувствительного элемента ЧЭ) в электрический сигнал. Электрический сиг­нал (ЭС) появится на выходе потенциометра только после того, как на резистивную дорожку (П) будет подано внешнее напряжение (ВЭ). Следует отме­тить, что внутри датчика, посредством чувствительного элемента (ЧЭ), всегда имеет место внутреннее преобразование внешнего неэлектрического воздействия (НВ) в промежуточный неэлектрический сигнал (НС), что показано на рис. 2.1, б (поз. 1). Применительно к датчику угла поворота, угловое положение оси потенциометра является неэлектрическим сигналом (НС) на выходе чувствительного элемента. Этому неэлектрическому сигналу (НС) соответствует выходной электрический сигнал (ЭС) датчика, если поданное па резистивную дорожку (П) внешнее напряжение (ВЭ) постоянно (рис. 2.1, б, поз. 4). Линей­ная характеристика преобразования (рис. 2.1, б, поз. 6) может быть легко изме­нена на квадратичную, ступенчатую и любую нелинейную с заданной крутиз­ной, что достигается подбором конструктивных размеров (длины, ширины, тол­щины) резистивной дорожки.

Рис. 2.1, а. Расположение датчиков на автомобиле

1 — датчик конфигурации впускного коллектора с управляемой геометрией, 2 — датчик тахометра, 3 — датчик положения распределительного вала, 4 — датчик нагрузки двигателя, 5 — датчик положения коленчатого вала, 6 — датчик крутящего момента двигателя, 7 — датчик количества масла, 8 — датчик температуры охлаждающей жидкости, 9 — датчик скорости автомобиля,10 — датчик давления масла, 11— датчик уровня охлаждающей жидкости, 12 — радарный датчик системы торможения, 13 — датчик атмосферного давления, 14 — радарный датчик системы предотвращения столкновений, 15 — датчик скорости вращения ведущего вала коробки передач, 16 — датчик выбранной передачи в коробке передач, 17 — датчик давления топлива в рампе форсунок, 18 — датчик скорости вращения руля, 19 — датчик положения педали, 20 — датчик скорости вращения автомобиля относительно вертикальной оси, 21 — датчик противоугонной системы, 22 — датчик положения сиденья, 23 — датчик ускорения при фронтальном столкновении, 24 — датчик ускорения при боковом столкновении, 25 — датчик давления топлива в баке, 26 — датчик уровня топлива в баке, 27 — датчик высоты кузова по отношению к шасси, 28 — датчик угла поворота руля, 29 — датчик дождя или тумана, 30 — датчик температуры забортного воздуха, 31 — датчик веса пассажира, 32 — датчик кислорода, 33 — датчик наличия пассажира в сиденье, 34 — датчик положения дроссельной заслонки, 35 — датчик пропусков воспламенения, 36 — датчик положения клапана рециркуляции выхлопных газов, 37— датчик абсолютного давления в впускном коллекторе, 38 — датчик азимута, 39 — датчик скорости вращения колес, 40 — датчик давления в шинах.

Читать еще:  Что такое hybrid двигатель

Из приведенного примера ясно, что любой датчик всегда состоит, как мини­мум, из двух частей — из чувствительного элемента (ЧЭ), способного восприни­мать входное неэлектрическое воздействие (НВ), и из преобразователя (П) проме­жуточного неэлектрического сигнала (НС) от чувствительного элемента в выход­ной электрический сигнал (ЭС).

По назначению датчики классифицируются по типу управляющего неэлектри­ческого воздействия: датчики краевых положений, датчики угловых и линейных перемещений, датчики частоты вращения и числа оборотов, датчики относитель­ного или фиксированного положения, датчики механического воздействия, датчи­ки давления, датчики температуры, датчики влажности, датчики концентрации кислорода, датчик радиации и др.

► Датчики подключаются к ЭБУ или средствам индикации для передачи ин­формации о параметрах контролируемой среды. В автомобильных системах цепа и надежность имеют огромное значение и при прочих равных условиях всегда вы­бирают датчик с наименьшим числом соединителей. Если к датчику следует под­ключить 5—6 проводов (например, ЛДТ), целесообразно разместить микросхему обработки сигнала непосредственно на датчике и передавать данные контроллеру через последовательный интерфейс.

При подключении датчиков к ЭБУ следует иметь в виду, что шасси (масса) ав­томобиля не может быть использована в качестве измерительной земли. Между точкой подключения ЭБУ к массе и датчиком напряжение может падать до I В за счет токов силовых элементов по массе, что недопустимо как при штатной работе датчика, так и при его диагностике.

Подавляющее большинство датчиков из числа вышеперечисленных уже доста­точно широко используется на современных импортных и отечественных автомо­билях. Их устройство, работа и принципы диагностирования подробно описаны в [3] и [4|. Но есть и такие, которые появились относительно недавно и находятся на стадии внедрения в новейшие автомобильные системы. Описанию именно та­ких датчиков уделено наибольшее внимание в данной главе.

Проводной цифровой датчик температуры ZONT CAR

Цифровой датчик температуры в металлической гильзе с креплением под винт

Назначение

Предназначен для измерения температуры теплоносителя двигателя или системы отопления. Защищен от доступа влаги и можно его применять на улице. Не требует калибровки.

Основные параметры

Диапазон измеряемых температур-55 — +125°C
Погрешность измеренийне более 0,5°C
Точность измерений0,1°C
Длина провода2,5 м
Основные
ДисплейНет
СостояниеНовое
Гарантийный срок12 мес
Страна производительРоссия
ПроизводительЗОНТ
Пользовательские характеристики
Тип монтажа терморегулятораКрепление под винт
ПроизводительZONT
  • Цена: 27 руб.

ООО «Лаборатория тепла»

220051, г. Минск, ул. Слободская, д. 2, пом. 15

Дата регистрации в Торговом реестре/Реестре бытовых услуг: 26.05.2015

Номер в Торговом реестре/Реестре бытовых услуг: 260294, Республика Беларусь

Регистрационный орган: Минский горисполком

Дата регистрации компании: 05.03.2015

ДеньВремя работы
Понедельник09:00 — 18:00
Вторник09:00 — 18:00
Среда09:00 — 18:00
Четверг09:00 — 18:00
Пятница09:00 — 18:00
СубботаВыходной
ВоскресеньеВыходной
  • В наличии
Условия возврата и обмена

Компания осуществляет возврат и обмен этого товара в соответствии с требованиями законодательства.

Сроки возврата

Возврат возможен в течение 14 дней после получения (для товаров надлежащего качества).

Обратная доставка товаров осуществляется за счет покупателя.

Если покупатель обнаружил недостатки товара после его приобретения, то он может потребовать замену у продавца. Замена должна быть произведена в течение 7 дней со дня предъявления требования. В случае, если будет назначена экспертиза на соответствие товара указанным нормам, то обмен должен быть произведён в течение 20 дней. Технически сложные товары ненадлежащего качества заменяются товарами той же марки или на аналогичный товар другой марки с перерасчётом стоимости. Возврат производится путем аннулирования договора купли-продажи и возврата суммы в размере стоимости товара.

ДеньВремя работыПерерыв
Понедельник09:00 — 18:00
Вторник09:00 — 18:00
Среда09:00 — 18:00
Четверг09:00 — 18:00
Пятница09:00 — 18:00
СубботаВыходной
ВоскресеньеВыходной

* Время указано для региона: Беларусь, Минск

Исследуем датчик температуры охлаждающей жидкости

Содержание

  • 1 Основные функции датчика температуры охлаждающей жидкости.
  • 2 Как устроен датчик температуры охлаждающей жидкости?
  • 3 Как проверить датчик температуры охлаждающей жидкости своими руками?

В современном автомобилестроение применяется все больше датчиков и анализаторов, для автономного поддержания работоспособности автомобиля. Сегодня, датчики являются важной частью транспортного средства, которая контролирует состояние важнейших автомобильных систем. Одним из наиболее важных, является датчик контроля за температурой жидкости в охладительной системе. Датчик температуры охлаждающей жидкости находиться в отсеке двигателя автомобиля и выполняет важную функцию, передачу термических показателей рабочей смеси электронному блоку правления. Несмотря на то что функция анализатора крайне важна для правильной работы важнейшей системы транспортного средства, датчик имеет достаточно простое устройство.

Читать еще:  Что такое awt двигатель

Помимо контроля за температурой охлаждающей жидкости, анализатор имеет важное значение для работы многих систем транспортного средства. Анализируя показания датчика охлаждающей жидкости, блок управления контролирует работу топливной системы, устройств питания и других важнейших компонентов автомобиля. Неисправный датчик температуры охлаждающей жидкости, способствует неправильным действиям электронного блока, что может привести к достаточно неприятным последствиям. В связи с этим необходимо поддерживать работу анализатора на должном уровне и своевременно проверять его функциональность. Столкнувшись с неисправностью рассматриваемого устройства, некоторые автолюбители путают его с датчиком указателя охладительной смеси. Дело в том, что указатель температуры отвечает только за трансляцию показаний на приборную панель, в то время как датчик температуры охлаждающей жидкости взаимодействует с электронным блоком управления. После того как блок управления получает информацию о повышенной температуре рабочей смеси, он принимает соответствующие меры для нормализации работы системы. Температура охлаждающей жидкости, может регулироваться при помощи специального вентилятора.

Основные функции датчика температуры охлаждающей жидкости.

Благодаря функции анализатора охлаждающей жидкости, электронная система управления выполняет следующие функции:

— Установка правильного угла зажигания. Получая сигнал анализатора, система корректирует запаздывание и опережение зажигания. Корректно выставленное зажигание, в значительной мере снижает показатель отработанных газов и способствует меньшему потреблению топливной смеси. Помимо этого, правильный угол зажигания благоприятно влияет на продуктивность работы двигателя автомобиля.

— Насыщение топливной смеси на транспортных средствах с системой впрыска. После того как блок получает информацию от анализатора о низкой температуре движка, он продлевает воздействие на форсунки. Таким образом, настраивается работа мотора на холостом ходу и обеспечивается отсутствие посторонних колебаний при нагреве двигательной системы. В случае если блок получает сигнал о перегреве, насыщенность рабочей смеси снижается до необходимого уровня для поддержания должного расхода топливной смеси и снижения уровня выхлопных газов. Если функция анализатора нарушена, электронный блок управления не имеет возможности контролировать состояние рабочих систем автомобиля. В таком случае происходит неправильное обогащение смеси и сбивается правильная работа важнейшей системы транспортного средства.

— Определение и корректировка характеристик горючего состава при закрытом или свободном контуре. В случае неправильной работы устройства, блок никак не отвечает на информацию кислородного анализатора и его работа нарушается в большей мере.

Помимо этого, термический анализатор имеет важную роль для функционирования коленчатого вала, вентиляции фильтра и настройки холостого хода автомобиля. Еще одной важной функцией устройства, является отключение гидравлического трансформатора коробки передач в случае перегрева.

Как устроен датчик температуры охлаждающей жидкости?

До недавнего времени в автомобилестроении широко применялись механические анализаторы, представляющие собой простое термическое реле. Такое устройство, имело несколько меньше функций чем его современный аналог. Механический датчик, поддерживал термические показатели при закрытом контакте и насыщал рабочую смесь при открытым контакте.

Современное устройство имеет гораздо более широкий набор функций и соответственно более сложную структуру. Несмотря на это, современные датчики достаточно просты в эксплуатации, не требуют излишнего внимания и редко приходят в неисправность. Надежный принцип функционирования, позволяет поддерживать правильную работу автомобиля долгие годы.

Настоящие датчики, представляют собой особые термические резисторы, которые в максимально короткий временной период способны изменить сопротивление при возрастании или понижении температуры. Как правило, современные анализаторы производят из специального сплава никеля и кобальта, а также других материалов, обладающих хорошей проводимостью. При изменении температуры, в резисторе изменяется количество свободных электронов. Таким образом, изменяется сопротивление анализатора.

Само устройство расположено в защитном корпусе, обладающим специальным разъемом соединения и крепежом. Температурные показатели устройства являются отрицательными, и датчик увеличивает свое сопротивление в случае пониженной температуры двигателя. При нагреве двигателя, сопротивление уменьшается и соответственно изменяется напряжение анализатора. Реагируя на изменения в датчике, электронный блок управление производит контроль состояние двигательной системы, изменяя температуру охлаждающей жидкости.

В последнее время, процесс анализа температуры постоянно усложняется. На большинстве современных автомобилей, установлен дополнительный датчик для контроля за термическим состояние мотора. Благодаря такой системе, контроль за состоянием двигателя становится более надежным и продуктивным. Установка дополнительного датчика, позволяет электронному блоку более точно следить за состоянием важнейшей системы транспортного средства.

Как проверить датчик температуры охлаждающей жидкости своими руками?

Несмотря на надежность современных устройств, как и любой компонент автомобиля датчик имеет свойство приходить в неисправность. Даже незначительные перебои в работе датчика могут приводить к неблагоприятным последствиям. Поэтому возникает необходимость поддерживать работу анализатора на должном уровне. Значительно поврежденный датчик не подлежит восстановлению, а требует обязательной замены. Но перед этим, необходимо в обязательном порядке выявить причины неисправности. Для продуктивной проверки датчика, требуется наличие соответствующего оборудования. Диагностическое устройство способно определить код ошибки, тем самым вывив характер и причину неисправности. Поэтому для проверки датчика потребуется обратиться в специализированный сервис. После получения номера неисправности, можно продолжить работу самостоятельно.

Если сброс ошибки не принес необходимого результата, требуется заменить неисправный датчик. Для этого, необходимо найти оригинальное устройство завода изготовителя. Использование аналогов, как правило, не приносит должного результата. При этом могут возникнуть сложности при его установке. Поэтому крайне не рекомендуется использовать иные анализаторы.

Диагностику неисправного устройства можно провести самостоятельно путем визуального осмотра. В ходе такого обследования можно выявить характерные неисправности, такие как: утечку охладительной смеси, нарушение структуры анализатора путем механического воздействия, образование коррозии на держателях.

Читать еще:  Восход схема сборки двигателя

Конечно, такие неполадки не требуют замены самого датчика, но в значительной мере могут повлиять на работоспособность устройства. После визуального осмотра, необходимо провести анализ напряжения и сопротивления элемента. Для этого, необходимо воспользоваться электроизмерительным прибором. Полученные значения, сравниваются с указанными в комплектующей инструкции.

Полная проверка элемента, поможет успешно выявить причины неисправности, и принять меры к их устранению.

Как правило, причинами утраты функции датчика являются:

  • Неправильная работа вентилятора охлаждение или нарушение функции термостата.
  • Нарушение герметичности проводников.
  • Потеря напряжения.

Определить причину неисправности можно только после проведения качественной диагностики. Замена устройства производится только при достаточном сливе охлаждающей жидкости. При смене, датчик должен находиться выше уровня рабочей смеси.

Устройство автомобилей

Приборы измерения температуры

Общие сведения о приборах для измерения температуры

Для контроля эффективной работы систем и агрегатов автомобиля необходимо знать их температурный режим. При эксплуатации, например, непрогретого двигателя резко снижаются его мощностные и экономические показатели, а его перегрев ведет к снижению ресурса или возникновению неисправностей, вплоть до полного отказа из-за заклинивания деталей цилиндропоршневой группы.

Для контроля температурного режима работа узлов и агрегатов на автомобиле применяются дистанционные термометры и сигнализаторы температуры, датчики которых устанавливают в контролируемой среде, а указатели — на приборной панели автомобиля в кабине водителя.

По принципу действия приборы для измерения температуры делятся на механические, электромеханические и электрические. К механическим приборам относятся жидкостные (обычно ртутные) и манометрические термометры. Механические термометры обычно используются для измерения относительно низких температур и в конструкции автомобилей не применяются.

В автомобильной технике для измерения температуры рабочих сред и элементов конструкции чаще применяются термобиметаллические импульсные и логометрические температурные приборы, которые можно объединить общим названием – термоэлектрические приборы.

В импульсных термобиметаллических термометрах используется эффект деформации, возникающий при нагреве пластины, спаянной из двух разнородных металлов или сплавов (биметаллическая пластина).

Работа термоэлектрических термометров логометрического типа основана на термоэлектрическом эффекте, возникающем при нагревании места спая двух проводников из неоднородных металлов или сплавов (терморезистора). Если два других конца проводников замкнуть, то под действием термоЭДС нагреваемого спая в образовавшейся цепи возникает электрический ток, величина которого зависит от степени нагрева места спая.

Спаянную или сваренную пару из двух разнородных металлов или сплавов называют термопарой или терморезистором. Обычно для измерения относительно низких температур (до 600 ˚С) в машиностроении применяют хромель-копелевые (ХК) термопары, а для измерения высоких температур (до 1000 ˚С) – хромель-алюмелевые (ХА) термопары. Существуют также и другие типы термопар.

Устройство термобиметаллического импульсного термометра

Термобиметаллический импульсный термометр состоит из датчика и стрелочного указателя. Общее устройство указателя и схема работы импульсной системы показаны на рис. 1.

Рис. 1. Импульсная система: а — устройство указателя; б — схема импульсного измерителя температуры:
1 — стрелка; 2 — спираль указателя; 3П-образная термобиметаллическая пластина; 4 — регулировочный сектор; 5 — упругая пластина; 6 — спираль датчика; 7 — биметалл датчика; 8 — контакты

Датчик термобиметаллического импульсного термометра (рис. 2) представляет собой латунный тонкостенный баллон 9, закрепленный в корпусе 6. Термобиметаллическая пластина 3 баллона закреплена на изоляторе 8 основания. На термобиметаллическую пластину намотана нагревательная обмотка 4, один конец которой соединен с контактом 2, а второй через контактор 5 подходит к выводному зажиму 7. Неподвижный контакт 1 соединен с корпусом 6 датчика.

Указатель термобиметаллического термометра по своей конструкции и принципу действия аналогичен термобиметаллическому указателю давления (рис. 1).

Устройство логометрического термометра

Логометрические термометры, также как и манометры состоят из датчика и указателя. Конструкция и принцип действия указателя логометрического термометра аналогичны конструкции указателя давления

Терморезисторный датчик к температуры (рис. 3) представляет собой латунный баллон 1, к плоскому донышку которого с помощью токоведущей пружины 3 прижат терморезистор 4, выполненный в виде таблетки.
Пружина 3 верхним концом соединена с зажимом 2 датчика и изолирована от стенки баллона специальной втулкой.
Сопротивление терморезистора значительно уменьшается при повышении температуры, что приводит к увеличению силы тока, проходящего через измерительные индукционные катушки логометрического указателя.

Сигнализаторы аварийной температуры

Применение на автомобиле дистанционного стрелочного термометра не гарантирует, что внезапное нарушение теплового режима двигателя будет сразу замечено водителем. Поэтому в дополнении к стрелочному термометру устанавливают сигнализатор аварийной температуры.
При этом если система охлаждения двигателя жидкостная, датчик сигнализатора температуры устанавливают в верхний бачок радиатора, а если на автомобиле двигатель с воздушным охлаждением (например, автомобили «ЗАЗ», «ЛуАЗ»), то датчик сигнализатора аварийной температуры устанавливают в смазочную систему и по температуре масла судят о температурном режиме двигателя.

Сигнализаторы применяют также для контроля температуры масла в автоматической коробке передач. Все используемые на автомобилях датчики сигнализаторов аварийной температуры биметаллические.

Конструкция датчика сигнализатора аварийной температуры охлаждающей жидкости, применяемого на автомобилях марки «КамАЗ», приведена на рис. 4 .
Датчик имеет массивный латунный корпус 7, на дне которого под прижимной шайбой 6 находится петлеобразная термобиметаллическая пластина 1 с контактом 5. В выводном зажиме 3, изолированном от корпуса 7, по резьбе можно перемещать тарельчатый контакт 4, тем самым устанавливая температуру замыкания контактов.

Рис. 4. Датчик сигнализатора аварийной температуры: 1 — термобиметаллическая пластина; 2 — изолятор; 3 — зажим; 4 — тарельчатый контакт; 5 — контакт; 6 — прижимная шайба; 7 — корпус

При достижении температуры охлаждающей жидкости 92…98 ˚С термобиметаллическая пластина разгибается и замыкает контакты 5 и 4, что приводит к включению контрольной лампочки на приборной панели.

Аналогичную конструкцию имеют датчики аварийного включения вентилятора системы охлаждения в современных автомобилях с электрическим приводом вентилятора. Основное отличие этих датчиков от рассмотренных выше заключается в наличии двух контактных выводов вместо одного.

Ссылка на основную публикацию
Adblock
detector