Электронная система управления двигателем: секрет эффективности современных авто
Электронная система управления двигателем: секрет эффективности современных авто
Друзья, вы наверняка, неоднократно замечали, что в статьях посвящённых мотору автомобиля, а также и другим важным узлам, зачастую упоминается электронная система управления двигателем.
А вот что это за устройство, к сожалению, объясняется не всегда. Восполним этот пробел и разберёмся с секретами, которые таит в себе данный блок.
С чего всё началось?
Точкой отсчёта в истории электронных систем управления двигателем автомобиля можно считать середину 60-х годов минувшего столетия. Именно тогда компания Bosch предложила заменить механический способ контроля зажигания транзисторным.
Дальше электронная система управления двигателем развивалась семимильными шагами, и через несколько лет, а если быть точнее, то в 1979 году эта же немецкая фирма представила объединённую систему впрыска и зажигания.
Современные блоки контроля мотора машины наблюдают и управляют гораздо большим количеством параметров и узлов. Помимо этого, существуют системы, власть которых не ограничивается двигателем – это так называемые совместные блоки управления. Под их началом работают практически все агрегаты авто, например, тормоза, адаптивная подвеска, трансмиссия и т.д.
Электронная система управления двигателем — мозг, глаза и руки системы
Нужно отметить, что подобные системы управления используются и у бензиновых двигателей, и у дизельных агрегатов. В этот раз уделим внимание первым. Итак, современный блок контроля мотора управляет такими узлами:
- впрыск;
- зажигание;
- топливная система;
- впуск и выпуск;
- система охлаждения;
- вакуумный усилитель тормозов;
- рециркуляция выхлопных газов;
- устройства улавливания паров бензина.
Электронный мозг, заключённый в блоке где-то между мотором и салоном автомобиля – это лишь часть системы. Чтобы обеспечить контроль и управление параметрами силового агрегата, нужны ещё кое-какие приспособления – датчики и исполнительные устройства. Датчики являются глазами и ушами системы управления двигателем и их поистине огромное количество.
Так, к примеру, у технологии MED-Motronic (технология непосредственного впрыска), презентованной компанией Bosch в 2000 году, используется их более 13, расположившихся во всех уголках мотора. Среди них такие: датчик давления горючего в контуре низкого давления, положения педали газа, оборотов силового агрегата, температуры масла, воздуха во впускном коллекторе и охлаждающей жидкости, кислородные датчики и множество других.
На основе информации, поступившей от них и в соответствии с программами, заложенными в памяти, электронный блок принимает решение о тех или иных действиях и посылает сигналы на исполнительные устройства.
Если датчики – это глаза и уши, то исполнительные устройства – это руки электронной системы управления двигателем. Подчиняются ей самые разные элементы, например, топливный насос, катушки зажигания, форсунки цилиндров мотора, дроссельная заслонка, термостаты охлаждающей системы, вентилятор и ещё много, много других.
Может, обойдёмся без электроники?
Так ради чего затеяны все эти сложности с электроникой?
Во-первых, эффективный контроль над параметрами двигателя обеспечивает его надёжную и долговечную работу. Во-вторых, появилась возможность создавать поистине экономичные и экологичные агрегаты.
Достигаются эти плюшки путём комплексного и всеобъемлющего управления величиной крутящего момента мотора. В зависимости от того, в каком режиме функционирует двигатель (запуск, холостой ход, агрессивное движение, переходной режим во время переключения передачи и т.д.) формируется различное наполнение цилиндров воздушно-топливной смесью, а также регулируются углы опережения зажигания.
По всей видимости, уважаемые читатели, электроника в дальнейшем будет лишь усложняться и усложняться, а забот у водителя наоборот – со временем становиться всё меньше. Наверное, такие перспективы могут только радовать, или нет?
Оставляйте ваши комментарии, подписывайтесь на рассылку и изучайте автомобили вместе с нами!
ЭСУД: что это такое в автомобиле
Одним из главных элементов современного автомобиля является ЭСУД – электронная система управления двигателем. Именно она обеспечивает работу двигателя в оптимальном режиме мощности и, потребления топлива, кроме того, на нее возложена функция управления многочисленными функциями и рабочими процессами, протекающими в автомобиле. В общем смысле ЭСУД представляет собой компьютер ДВС, в котором обрабатываются показания датчиков и в соответствии с ними подаются те или иные команды на прочие системы и агрегаты. Однако это определение слишком общее, поэтому для понимания сущности и роли данного элемента следует разобраться в тонкостях его работы.
Что такое ЭСУД в автомобиле
Данная система объединяет в себе большое количество различных компонентов:
- датчики и подсистемы, фиксирующие показания и рабочее состояние различных агрегатов двигателя;
- передающие провода;
- электронный блок управления – центральный элемент ЭСУД и своеобразный «мозг» автомобиля, в котором данные, получаемые с датчиков, обрабатываются и интерпретируются.
Необходимость внедрения электронной системы управления рабочими параметрами двигателя стала очевидной в процессе оптимизации процессов зажигания и впрыска – механическая регулировка и контроль не обеспечивали достаточной точности и эффективности, в результате чего КПД использовавшихся ранее ДВС был низким. На современных же моделях широко используются электронные контрольные модули, которые отвечают не только за вышеназванные параметры, но и за многие другие: впуск топливной смеси в цилиндры, охлаждение двигателя, выпуск отработанных газов, улавливание паров бензина и т.д.
Как правило, ЭСУД объединяется в единый комплекс с другими системами автомобиля, включая блок управления КПП, рулевой электроуситель, ABS, систему активной безопасности и т.д.
Из чего состоит ЭСУД
В состав электронной системы управления двигателем входят самые разные компоненты, в совокупности обеспечивающие комплексную регулировку рабочих параметров ДВС. К основным ее элементам относятся следующие:
- электронный контроллер – основная часть всей системы, именно здесь анализируются показания датчиков, проводятся вычисления и формируются команды исполнительным агрегатам и подсистемам;
- датчик массового расхода воздуха – фиксирует количество поступающего в цилиндры воздуха и в соответствии с этими данными изменяет объем подаваемого топлива;
- датчик скорости – фиксирует текущую скорость и преобразует полученное значение в электронный сигнал;
- кислородные датчики – определяет количество кислорода в выхлопных газах до и после стадии нейтрализации;
- датчик неровной дороги – важный элемент современных электронных подвесок, анализирует силу вибрации кузова и преобразует полученное значение в сигнал;
- датчик фаз – подает на контроллер сигнал при поднятии первого поршня в высшую точку на такте сжатия;
- датчик температуры жидкости в системе охлаждения;
- датчик положения коленчатого вала – фиксирует величину угла при повороте вала;
- датчик дроссельной заслонки – определяет угол открытия заслонки;
- датчик детонации – определяет интенсивность детонационных процессов в двигателе по уровню поступающих шумов;
- модуль зажигания – в нем аккумулируется энергия, необходимая для поджигания топливовоздушной смеси, а также обеспечивает требуемое напряжение свечей;
- форсунки – отвечают за распределение топлива между цилиндрами;
- регулятор топливного давления – поддерживает требуемое давление при подаче топлива;
- модуль бензонасоса – отвечает за избыточное давление в питающей двигатель системе;
- адсорбер – необходим для улавливания бензиновых испарений;
- нейтрализатор – уменьшает токсичность выхлопа двигателя за счет каталитических реакций;
- датчик холостого хода – регулирует питание двигателя при холостой работе;
- диагностический сигнал – лампа на приборной панели, загорание которой свидетельствует о той или иной неисправности в работе двигателя;
- диагностический интерфейс – позволяет подключать к ЭСУД специализированное диагностическое оборудование.
Как видно, электронная система управления двигателем включает в себя внушительное количество самых разных датчиков и регуляторов. При этом все поступающие с них данные анализируются в едином электронном блоке, который представляет собой полноценный микрокомпьютер.
Читайте также: Что такое CAN шина в автомобиле и для чего она нужна.
Какие задачи выполняет ЭСУД
Большое количество компонентов, входящий в состав электронной системы управления, обусловливает и широкое разнообразие выполняемых ей задач. По большому счету, она полностью управляет работой двигателя, оперативно изменяет его параметры и фиксирует его состояние. К наиболее важным функциям ЭСУД можно отнести следующие:
- расчет оптимального объема топлива и момента его подачи в камеру сгорания;
- определение момента генерации искры, воспламеняющей ТВС;
- регулировка угла опережения зажигания;
- контроль положения коленвала;
- самодиагностика системы, всех ее подсистем и исполнительных механизмов.
Все элементы ЭСУД работают в комплексе, что позволяет достигать оптимальной производительности мотора. Если в ходе диагностики выявляются какие-либо неисправности, то на экран либо приборную панель выводится соответствующее уведомление. Если обнаруженные нарушения создают угрозу двигателю и автомобилю в целом, то система управления отдает команду на его отключение. Если поломка не такая серьезная, то можно временно продолжать движение – но в любом случае нужно как можно скорее обратиться на автосервис.
Для определения действительной неисправности необходимо использовать специальное диагностическое оборудование. При подключении к соответствующему разъему оно считает информацию, расшифрует код ошибки и предоставит точные сведения о выявленной неполадке.
В этом выражается еще одна важная функция ЭСУД – сокращение затрат времени и денег на ремонтные работы. Работникам СТО будет достаточно только получить код ошибки, после чего можно сразу же приступать к устранению поломки.
Читайте также: Что такое Что такое инжектор в автомобиле и как он устроен.
Экологичные и малошумные: разработки ЦИАМ в области гибридных и электрических технологий для авиации
Электрификация – один из перспективных векторов развития мирового и отечественного авиастроения. Разработкой гибридных и полностью электрических силовых установок занимаются все крупные мировые авиационные производители и научные центры. Технологии создания гибридных (ГСУ) и электрических (ЭСУ) силовых установок для перспективных летательных аппаратов (ЛА) становятся важным фактором в конкурентной борьбе авиастроителей в свете ужесточения экологических требований ИКАО. Это также соответствуют тезису, что будущее – за неуглеводородными топливами.
Разработки в этой области находятся в фокусе внимания всех авиационных держав: новые технологии планируется использовать как в военной сфере – боевые и разведывательные беспилотники, легкие учебно-тренировочные самолеты, так и в гражданской – развитие маршрутной сети, появление новых типов летательных аппаратов. Создание двигателей новых схем может дать толчок развитию ЛА с новой архитектурой: мультироторного типа, конвертопланам с вертикальным или ультракоротким взлетом и посадкой и др. В конечных результатах исследований в данной области заинтересован и бизнес в лице авиакомпаний, нацеленных на снижение издержек.
Преимущества гибридизации
В настоящее время повышение топливной эффективности традиционных газотурбинных двигателей дается все труднее и труднее. И здесь гибридизация может помочь. Традиционные газотурбинные двигатели должны работать на всех режимах и, в первую очередь, обеспечивать взлет и набор высоты. Так получается, что для крейсерского режима мощность такого двигателя избыточна. Для снижения мощности двигателя снижается расход подаваемого в камеру сгорания топлива (дросселируется), что приводит к повышению удельного расхода топлива. Гибридная силовая установка позволяет решить эту проблему путем комбинирования различных типов источников энергии, оптимизированных под каждый режим полета.
Есть множество схем гибридных силовых установок. Например, в последовательной силовой установке воздушный винт (вентовентилятор) приводится во вращение электромотором. Электроэнергию электродвигатель получает от генератора, вращаемого газотурбинным двигателем, и от аккумуляторов. На взлете и наборе высоты одновременно будут работать газотурбинный двигатель и аккумуляторы. Газотурбинный двигатель оптимизирован под крейсерский режим полета и будет обеспечивать энергией электродвигатель и заряд аккумуляторов. Такое решение позволит за счет мощности второго источника обеспечить ГТД энергией и расходовать меньше топлива, обеспечивая достаточную тягу при наборе высоты и экономию топлива – и ресурса традиционного двигателя – в крейсерском полете.
Также подобная схема является более выгодной с точки зрения экономики. Она позволяет вместо двух газотурбинных двигателей, дорогих в производстве и в обслуживании, использовать один, что положительно сказывается на стоимости силовой установки и затратах на ТОИР. Другим преимуществом является повышение безопасности полетов. Так, в случае отказа газотурбинного двигателя в полете, самолет способен совершить экстренную посадку на аккумуляторных батареях.
Если говорить об экономических преимуществах создания и применения новых силовых установок, то, например, на самолетах местных авиалиний с ГСУ расход топлива может быть сокращен на 20% уже в самое ближайшее время, что также приведет к сокращению выбросов вредных веществ в атмосферу. Конструктивные преимущества применения высокоэффективных СУ могут обеспечить экономический эффект в виде снижения стоимости конечного изделия, так как удельные характеристики электродвигателей практически не зависят от их мощности.
Россия – в тренде
Разработки в области ГСУ и ЭСУ с целью обеспечить технологический прорыв и заложить фундамент для новых стандартов ведут практически все ведущие разработчики авиационной техники в США, Франции, Великобритании, Германии и других странах: Airbus, Boeing, NASA, DARPA и др. Использование водорода в качестве топлива активно развивают Германия и Япония, имеющие самые продвинутые технологии в области водородных топливных элементов. Количество различных проектов аэротакси в мире уже перевалило за 150.
Первым проектом данной тематики стали инициативные работы ЦИАМ над беспилотником с ЭСУ на водородных топливных элементах. Всего было испытано четыре ЛА такого типа: первые два – на зарубежных элементах питания, следующие два поднялись в небо на батареях, разработанных в сотрудничестве с Институтом проблем химической физики (ИПХФ) РАН. Примечательно, что данная работа стала катализатором для создания отечественного топливного элемента, который позже вышел в серийное производство.
В 2017 году, уже под патронажем Минпромторга России, проявившего интерес к перспективам применения ГСУ и ЭСУ, была запущена работа по формированию опережающего научно-технического задела в этой области и созданию демонстраторов технологий. Учитывая многолетний опыт, наличие высококвалифицированных научных кадров и собственной экспериментальной базы, ЦИАМ был выбран в качестве головного исполнителя ряда государственных контрактов.
В рамках этого проекта выполнен ряд научно-исследовательских работ.
Итогом одной из них стала полностью электрическая СУ для экспериментального двухместного самолета «Сигма-4». Этот самолет предназначен для обучения пилотированию, тренировочных и туристических полетов, аэрофотосъемки и других воздушных работ. Питание электрического двигателя с максимальной мощностью 80 кВт (109 л.с.) осуществляется от блока аккумуляторных батарей, состоящих из литий-ионных аккумуляторных ячеек. Летные испытания самолета с ЭСУ запланированы на 2021-2022 гг. и будут проводиться в два этапа: первый – только с использованием заряда аккумуляторов, второй – с добавлением топливного элемента, что при той же массе, что и у аккумуляторов, позволит увеличить время полета в 3-4 раза.
Также был разработан демонстратор вспомогательной электрической установки мощностью 30-40 кВт на базе топливного элемента. Это именно вспомогательная ЭСУ, которая выступает в качестве энергоузла для летательного аппарата. То есть в ее задачи, в первую очередь, входит обеспечение самолета электроэнергией на земле. Например, во время рулежки или технического обслуживания. Однако она может быть использована как основной или резервный источник электроэнергии на определенных режимах полета.
Освоив 60-80-киловаттную мощность электродвигателя, специалисты Института накопили достаточно опыта, чтобы повысить этот показатель.
Демонстратор ГСУ, выполненный ЦИАМ в рамках НИР «Электролет» и ее продолжения «Электролет СУ-2020», состоит из электрического двигателя мощностью 500 кВт (680 л.с.), энергоузла для его питания, в который входят серийный турбовальный двигатель с подключенным к свободной турбине электрогенератором, а также блок аккумуляторных батарей. Уникальность российского технического решения для электродвигателя, разработанного ЗАО «СуперОкс» по заказу Фонда перспективных исследований (ФПИ), заключается в использовании высокотемпературных сверхпроводниковых технологий и криогенного охлаждения. Данное нововведение позволило решить одну из сложнейших проблем современного двигателестроения – существенно снизить электрическое сопротивление и свести тепловыделение практически к нулю. В результате были достигнуты более высокие показатели весовой эффективности двигателя и КПД электрических машин 98%.
В 2020 году демонстратор прошел финальную доработку и стендовые испытания, результаты которых позволили перейти к летным испытаниям. Наземные пробежки летающей лаборатории Як-40ЛЛ с ГСУ, дополняющей два штатных турбореактивных двигателя, состоялись в феврале 2021 года в СибНИА (также входит в НИЦ «Институт имени Н.Е. Жуковского»). Первые летные испытания летающей лаборатории запланированы на вторую половину 2021 года.
В этой научно-исследовательской работе, помимо коллег из СибНИА и «СуперОкс», принимает участие целая команда специалистов из МАИ, УГАТУ, ИЭЭ РАН и др. Головным исполнителем работ является ЦИАМ.
Российские «электросамолеты» на МАКС 2021
Актуальность темы силовых установок новых типов в авиационном двигателестроении подтверждается и пристальным вниманием, которое уделяется этой составляющей при организации Международного авиационно-космического салона МАКС 2021.
Первые отечественные «электросамолеты» будут впервые представлены вниманию широкой аудитории в рамках единой экспозиции организаций, входящих в НИЦ «Институт имени Н.Е. Жуковского».
Тема «электричества» в экспозиции ЦИАМ поддерживается еще несколькими интересными и перспективными разработками. Например, ГСУ на базе двухсекционного турбированного роторно-поршневого авиационного двигателя с электрогенератором – ЭУ-РПД350Т. Он предназначен для применения в составе ГСУ летательных аппаратов вертикального взлета и посадки.
Также на МАКС будет представлен концепт комплексного проекта «Силуэт», являющегося развитием темы применения технологий ВТСП и криогенных топлив в авиации. Его реализацию ЦИАМ планирует начать в 2022 году. В рамках сотрудничества с Фондом перспективных исследований и использования опыта разработки ГСУ мощностью 500 кВт планируется создать демонстратор технологий полностью сверхпроводящей ГСУ мощностью 2 МВт. Макет этой установки можно будет увидеть на экспозиции.
Отраслевые перспективы
Приоритетными задачами ЦИАМ, как головного научного института авиационного двигателестроения, являются получение новых знаний в рамках формирования опережающего научно-технического задела и экспериментальная проверка жизнеспособность новых технических решений и перспективных технологий. Вся эта работа затем находит свое применение в промышленности, чтобы в значительной степени снизить риски и затраты на стадии опытно-конструкторских работ.
Недавно ЦИАМ в партнерстве с АО «ОДК-Климов» (входит в Объединенную двигателестроительную корпорацию Ростеха) приступил к разработке демонстратора ГСУ последовательной схемы на базе двигателя ВК-650В. Такая СУ может найти себе самое широкое применение в составе легких многоцелевых вертолетов, перспективных беспилотных и пилотируемых ЛА взлетной массой 2-8 т, самолетов МВЛ, аэротакси, воздушных судов бизнес-авиации и ЛА вертикального взлета и посадки.
Серьезный интерес к новым силовым установкам в мировом сообществе подтверждает, что эра электричества в авиации – не перспектива 20 лет, а наступит уже в ближайшем будущем. Первые силовые установки уже готовы поднять в небо не просто легковесные беспилотники, а легкомоторные самолеты, а в дальнейшем, с развитием технологий, – обеспечить поддержку традиционным двигателям воздушных судов малой и региональной авиации. При этом прорывные исследования, в которых Россия находится в тренде мировых тенденций, являются важной отправной точкой обеспечения удовлетворения экологических требований ИКАО и нового витка развития авиастроения.
Автор: Михаил Гордин, генеральный директор ЦИАМ, кандидат технических наук
Электронная система управления двигателем в автомобиле: разбираем, что это и принцип работы
Сегодня подавляющее количество автомобилей, выпускающихся во всем мире, оборудованы ЭСУД. Это позволяет сделать работу двигателя более эффективной, а саму езду на автомобиле более безопасной и комфортной. Бензиновый мотор или дизельный – не важно.
- ЭСУД что такое, расшифровка
- Виды систем
- Где находится ЭСУД
- Устройство ЭСУД
- Принцип работы ЭСУД
- Диагностика
- Неисправности и их причины
- Типовые значения параметров ЭСУД
- Очистка памяти контроллера ЭСУД
- Распиновка
- Контроллер ЭБУ
- Датчик ЭСУД
- Главное реле
- Таблица масс ЭСУД в различных автомобилях
ЭСУД что такое, расшифровка
ЭСУД – электронная система управления двигателем. Представляет собой комплект электронно-вычислительного оборудования, отвечающего за работу только двигателя или двигателя вместе с другими системами легковой машины. По сути это автомобильный бортовой компьютер.
Виды систем
ЭСУД делятся на два типа, имеющие свои преимущества и недостатки:
- В первом случае, который часто называют английской аббревиатурой ECM (Engine Control Module), компьютер управляет только мотором.
- Во втором, ECU (Electronic Control Unit), он отвечает за все системы машины: двигатель, подвеску и т. д.
ВАЖНО! Общий для всех систем блок применяется чаще, поскольку это упрощает внутреннее устройство автомобиля с конструктивной точки зрения и удешевляет сборку. То есть, проще провести все провода от всех датчиков в одно место, чем устанавливать их в разные места.
С другой стороны, единый блок – менее безопасный вариант, чем «раздельные зоны ответственности» для разных систем. Его неисправность отразится на работе всех механизмов машины в то время как отдельные блоки работают независимо друг от друга. Например, тормозная система может сработать корректно при неисправности управления или двигателя.
Единый блок управления состоит из следующих элементов:
- Моторно-трансмиссионный блок.
- Блок контроля тормозной системы.
- Центральный блок управления.
- Синхронизационный блок.
- Блок контроля кузова.
- Блок контроля подвески.
Где находится ЭСУД
В подавляющем большинстве случаев ЭСУД, точнее – ЭБУ (электронный блок управления), находится под приборной панелью. В разных моделях автомобилей он может находиться по центру или в районе руля. Как правило, добраться до него достаточно просто с помощью обычной отвертки. Такое расположение сделано для облегчения доступа. Визуально как отечественный, так и зарубежный ЭБУ представляет собой небольшой (обычно размером примерно с две ладони) плоский ящик с гнездами для проводов.
Устройство ЭСУД
Поскольку электронная система управления двигателем это, по сути, компьютер, технически она устроена примерно так же, как стандартный ПК. Система помнит базовые установки, заложенные производителем и следит за соблюдением этих параметров в процессе работы двигателя.
На техническом уровне блок состоит из:
- Постоянного запоминающего устройства (ППЗУ). Это память, которая содержит базовый алгоритм управления мотором. Его можно изменить вручную. При отключении двигателя установки не удаляются.
- Оперативное запоминающее устройство (ОЗУ). Память, которая обрабатывает оперативные данные, поступающие от систем: соответствие заданным в ППЗУ параметрам, ошибки и т.п. Устройство имеет дополнительный источник питания – от аккумулятора, поэтому оно может сохранять данные, даже если прерывать питание.
- Электрически программируемое запоминающее устройство (ЭРПЗУ). Память, где хранятся коды противоугонной системы. Также отвечает за функционирование иммобилайзера.
Принцип работы ЭСУД
Главная задача системы – эффективная работа движка. Она на основании получаемой от различных узлов информации она регулирует крутящий момент, мощность и другие показатели в зависимости от режима работы мотора, комплектации ЭСУД и ее типа (самые популярные – м20, м73, м74, м86).
Стандартные режимы мотора, которые различает ЭСУД:
- Запуск и прогревание.
- Холостой ход.
- Движение, торможение.
- Смена передач.
Схема источников, от которых получает данные ЭСУД, зависит от модели авто и его комплектации. Обычно это датчики: положения коленвала, фаз, расхода воздуха, температуры охлаждающей жидкости, положения дроссельной заслонки, скорости, кислорода и детонации.
Кроме того, ЭСУД постоянно проводит самодиагностирование, также на основе показателей датчиков.
Диагностика
Помимо автоматической проверки корректности функционирования ЭСУД, специалисты рекомендуют проводить регулярное диагностирование системы. В среднем обслуживание стоит делать каждые 15 тыс км пробега. Диагностика ЭСУД проводится с помощью специального тестера, подключаемого в специальный разъем. Иногда используется беспроводной адаптер, использующий специальный протокол.
ВАЖНО! Лучше всего, если показатели будут расшифровываться специалистом, который на основании полученных данных может сделать вывод – какой конкретно элемент ЭСУД барахлит. После предварительных выводов, проводится более точная проверка вызывающего подозрения элемента.
Перед проведением тестов с помощью сканера, надо проверить питание системы и ее отдельных фрагментов. Причиной неисправности может быть поврежденная электропроводка, короткие замыкания, коррозия, различные помехи.
Неисправности и их причины
Выявление неисправностей ЭСУД можно начинать после обнаружения ряда признаков. Во-первых, при включении зажигания все лампочки сигнализатора системы должны загореться одновременно, таким образом система проверяет свой диагностический механизм. После запуска двигателя все должны одновременно потухнуть. Если какая-то из них загорается во время движения, это сигнализирует о проблемах в ДВС. В лучшем случае система может отключить двигатель, чтобы избежать тяжелых поломок. Список негативных ситуаций, в которым ведет неисправность ЭСУД, велик – может воздушить система охлаждения, не работать печка или термостат.
ВАЖНО! ЭСУД – тонкая система, поэтому описание проблем, которые могут случиться с электроникой может занять много времени.
В основном причинами неисправностей бывают:
- Поломка датчиков, отправляющих в ЭСУД данные.
- Поломки в самом блоке управления.
- Поломки исполнительных устройств системы управления (рост сопротивления, обрыв обмотки электромагнитного клапана и т.д.).
- Повреждение электропроводки.
- Вмешательство посторонних в устройство электронных систем, вследствие чего могло произойти нарушение их целостности.
Часто ЭСУД ломается из-за механических повреждений. Это может быть не обязательно удар, для причинения вреда системе хватит сильной вибрации. Далее по проценту вероятности повреждения ЭСУД следуют: резкий перепад температур, коррозия, попадание влаги под защитный кожух из-за разгерметизации устройства. Также нередко корректная работа системы нарушается из-за некомпетентного вмешательства в ее функционирование.
Ремонт системы можно доверять только специалистам.
Типовые значения параметров ЭСУД
Типовые значения параметров системы зависят от множества факторов. В первую очередь – от марки авто. На них также влияет влажность, температура окружающей среды и т.д. Таблицы типовых параметров для конкретных марок авто, с помощью которых осуществляется идентификация ЭСУД, можно найти в интернете.
Очистка памяти контроллера ЭСУД
Функция сброса памяти используется для обнуления накопившихся в ЭСУД данных. Это полезно делать при замене датчиков, если требуется его перепрошивать или если автомобиль начал странно себя вести без видимых причин. Если не удалось найти эту функцию в меню ЭСУД, очищать память можно с помощью специального программного обеспечения, доступного в интернете. Процедура удаляет данные, накопившиеся при самообучении системы и возвращает заводские настройки. Проводится при выключенном двигателе.
Распиновка
Распиновка (распайка) – процесс определения принадлежности провода и разъема к тому или иному процессу, его назначение. Например, информация про кислород может приходить по одному кабелю, про охлаждение – по другому и т.д. В интернете можно найти подробный список расшифровки для самых популярных систем – Бош, Январь, Ителма.
Контроллер ЭБУ
Контроллер электронного блока управления – непосредственно сама плата с микропроцессорами. На практическом уровне разницы между терминами ЭБУ и ЭСУД нет. Отличие в том, что блок – физически коробка с электроникой, а система – это комплекс, включающий блок, датчики и рабочие процессы.
Датчик ЭСУД
Датчики электронной системы – один из главных ее элементов, от них зависит связь между механизмами и ЭБУ, качество управления движком. При профилактическом тестировании ЭСУД надо внимательно проверять соединение и сами датчики на все возможные повреждения (механические, от перегрева или коррозии и т.д.).
Главное реле
Главное реле системы запускает большинство процессов: в том числе электропитание датчиков, реле бензонасоса и вентилятор радиатора охлаждения двигателя, катушек зажигания и форсунок (инжектора). Главное реле защищает предохранитель.
Таблица масс ЭСУД в различных автомобилях
Массой в ЭСУД обычно выступает корпус машины. Если какой-то из контактов с массой теряет надежность, электросхема нарушается, качество работы системы падает. Например, двигатель начинает произвольно менять режим работы, набирая или сбрасывая обороты без участия водителя. Чтобы справиться с такой проблемой, надо знать места заземления ЭСУД.