Типы двигателей у стиральных машин
Типы двигателей у стиральных машин
Вращение барабана стиральной машины обеспечивается электродвигателем. Изначально для преобразования электрической энергии в механическую использовали ременные приводы, присоединенные к барабану и вызывающие его движение.Сегодня в большинстве старых моделей стиральных машин все еще применяется именно эта технология, однако новые модели существенно эволюционировали. Если вам потребуется мастер по ремонту стиральной машины, обращайтесь в нашу фирму.
Техническое совершенствование принесло миру три улучшенных типа двигателей:
- асинхронный;
- коллекторный;
- бесколлекторный (прямой привод).
Каждый тип двигателей обладает своими достоинствами и недостатками, сильными и слабыми сторонами. При выборе стиральной машины следует учитывать эти показатели.
Асинхронный двигатель
Существуют двух- и трехфазные асинхронные двигатели для стиральных машин. Начиная с 2000-х годов, устройства с двухфазными двигателями практически не выпускают: их заменили более развитыми и компактными технологиями, к которым относятся и трехфазные с частотным регулированием скорости.
В устройстве таких моторов две основные части – неподвижный статор и вызывающий вращение барабана ротор. Скорость вращения может достигать 2800 оборотов в минуту. Самая частая неисправность – ослабление вращающего момента, из-за чего барабан начинает покачиваться по сторонам и не выполняет полных оборотов.
Асинхронный двигатель обладает следующими преимуществами:
- простота конструкции;
- легкость обслуживания (чаще всего необходимо лишь смазывать мотор или менять подшипники);
- низкий уровень шума;
- относительно низкая стоимость.
Недостатками же является большой размер мотора, низкий КПД, сложность при управлении электросхемами. В современных мощных стиральных машинах такие двигатели не используют, встретить их можно в простеньких и недорогих моделях.
Коллекторный двигатель
Около 80% всех бытовых приборов оснащены коллекторными моторами, и стиральные машины не исключение. Их используют с 90-х, а в 2000-х коллекторные двигатели практически полностью заменили двухфазные асинхронные. Такие моторы универсальны – они могут работать как от переменного, так и от постоянного тока.
Эти двигатели состоят из статора, коллекторного ротора, тахогенератора (генератора скорости вращения), алюминиевого корпуса и хотя бы двух щеток для контакта ротора с мотором. Щетки стачиваются о коллектор, поэтому периодически их необходимо менять.
Коллекторный двигатель отличается такими достоинствами:
- небольшие габариты;
- большой пусковой момент;
- нет привязки к частоте электросети;
- плавное управление оборотами (частота вращение регулируется увеличением или уменьшением напряжения);
- универсальность;
- простота управляющей электросхемы;
- быстроходность.
Значимые недостатки у коллекторных моторов – невысокий срок службы, необходимость замены щеток и шумность. Коллекторно-щеточный узел очень уязвим и выходит из строя чаще всех остальных деталей. При трении в этой области возникает искрение, вызывающее перегрев и отслоение ламелей коллектора от изолятора. Иногда обмотка ротора или статора подвергается межвитковому замыканию, что ведет к тому же искрению или ослаблению магнитного поля. В последнем случае ротор и барабан не крутятся полностью.
Прямой привод
Бесколлекторный двигатель называют также инверторным или мотором с прямым приводом. Это самая новая технология, разработанная корейским концерном LG. Распространение данного типа двигателей началось в середине 2005, с тех пор благодаря своей отличной работе, долговечности и компактности инверторный привод прочно занимает лидирующую позицию.
Сегодня эту технологию используют и другие компании, среди которых Haier, Samsung и Whirpool. Надежность, значимое превосходство прямых приводов над коллекторными и асинхронными двигателями, возможность сильно уменьшить габариты стиральных машин, устойчивость к износу, небольшое количество деталей и другие преимущества заметно расширили область применения бесколлекторных двигателей. Их оценили и начали использовать также в технике от Bosh и AEG.
В устройстве такого двигателя лишь ротор и статор, как и у асинхронного. Однако действие его совершенно иное. Привод присоединяется напрямую к барабану, что исключает применение соединительных элементов – самых уязвимых частей моторов. Управляющая схема в таких двигателях трехфазного инверторного типа.
Главные достоинства моторов этого типа такие:
- простота конструкции;
- удобное расположение в стиральной машине;
- компактность;
- низкий уровень колебания машинки;
- КПД выше, чем у остальных видов двигателей;
- отсутствие ремня и щеток, требующих регулярного обслуживания;
- относительная бесшумность.
Единственный значимый недостаток прямых двигателей не связан с потребителями, он больше задевает производителей – схема управления довольно сложна и ее разработка требует больших усилий, чем при создании электросхемы коллекторного двигателя. Это дополнительно увеличивает цену на инверторные стиральные машины от Электролюкс, Бош и остальных компаний.
Отличия коллекторных и бесколлекторных двигателей
Каждый, кто впервые видел искрящие щетки внутри дрели или болгарки, наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.
В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный. Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.
Коллекторный двигатель
Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.
Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).
На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.
Основной недостаток коллекторного двигателя
Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.
Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей. Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.
Бесколлекторный (бесщеточный) двигатель
У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором. Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.
Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.
Достоинства бесколлекторных двигателей
Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.
Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.
Как отличить асинхронный двигатель от двигателя постоянного тока
Асинхронные двигатели — это двигатели, в процессе работы которых под нагрузкой наблюдается явление скольжения, то есть «отставание» вращения ротора от вращения магнитного поля статора. Другими словами, вращение ротора происходит не синхронно с вращением намагниченности статора, а асинхронно по отношению к этому движению. Вот почему такого рода двигатели называются асинхронными (не синхронными) двигателями.
В большинстве случаев, произнося словосочетание «асинхронный двигатель», имеют ввиду именно бесколлекторный двигатель переменного тока. Величина скольжения асинхронного двигателя может быть разной в зависимости от нагрузки, а также от параметров питания и способа управления токами обмотки статора.
Если мы имеем дело с обычным двигателем переменного тока, наподобие АИР712А, то при синхронной частоте вращения магнитного поля в 3000 оборотов в минуту, в условиях номинальной механической нагрузки на валу в 750 ватт, мы будем иметь реальную частоту вращения 2840 оборотов в минуту, а значит величина скольжения составит 0,053.
Это нормальное явление для асинхронного двигателя. И на справочной табличке мы не увидим круглых цифр оборотов, вроде 3000 или 1500, вместо них там будет указано 2730 или 1325. Вместо 1000 может быть написано например 860, несмотря на то, что магнитное поле во время работы двигателя вращается с частотой 1000 оборотов в минуту, как и должно быть в электрической машине с 3 парами магнитных полюсов, предназначенной для питания переменным током частотой 50 Гц.
Что касается двигателей постоянного тока, то в большинстве случаев так называют коллекторные двигатели, на скорость вращения ротора у которых влияет не частота тока, а его средняя величина. Датчик скорости может помочь электронной системе управления установить правильную величину тока для получения заданной скорости вращения, однако связь тока и оборотов здесь будет отнюдь не линейной, так как при разной нагрузке токи разной величины дадут очень разные частоты вращения ротора.
На роторе двигателя постоянного тока может располагаться многосекционная обмотка возбуждения или постоянные магниты. Но сегодня ротор с магнитами характерен скорее для шаговых двигателей, которые тоже относятся к двигателям постоянного тока, однако коллекторно-щеточных узлов не имеют. Как вариант разновидности конструкции мотора постоянного тока — магниты на статоре, а обмотка — на роторе.
Так или иначе, асинхронный бесколлекторный двигатель имеет мощную рабочую обмотку на статоре, которая в процессе работы разогревается от прохождения по ней рабочего тока, и передает тепло на корпус двигателя. Поэтому и обмотку и корпус двигателя необходимо все время активно охлаждать.
В связи с этой особенностью, большинство асинхронных двигателей по умолчанию имеют на своих валах крыльчатки вентиляторов, а на корпусах — выступы, вдоль которых вентилятор, как через радиатор, гонит свежий воздух, охлаждая таким образом статор. Поэтому, если перед вами двигатель, на валу которого установлен вентилятор (обычно под крышкой, закрепленной на корпусе двигателя), вдоль корпуса имеются ребра (как на радиаторе), а на шильдике указана конкретная величина оборотов в минуту и величины переменного напряжения 220/380 — пред вами типичный асинхронный двигатель переменного тока.
В двигателях постоянного тока, с коллекторно-щеточными узлами и с многосекционными многовитковыми обмотками на якарях, выведенными на ламели коллектора, в качестве рабочих обмоток выступают — и обмотка статора, и обмотка ротора (якоря).
Здесь фактически получается, что рабочая обмотка как-бы разделена на две части: рабочий ток идет и через якорную обмотку, и через статорную обмотку, поэтому проблема нагрева только статора отсутствует, и вентилятор здесь не нужен.
Для охлаждения достаточно вентиляционных отверстий, через которые можно разглядеть ротор с якорной обмоткой на нем. Поэтому, если перед вами двигатель с коллекторно-щеточным узлом, где коллектор имеет множество ламелей (блестящих пластинок) с выводами от обмоток, и вентилятора словно бы и не предусмотрено — перед вами двигатель постоянного тока.
Статор двигателя постоянного тока может представлять собой набор постоянных магнитов. Большинство двигателей постоянного тока, рассчитанных на сетевое напряжение, будут легко работать и от переменного тока (пример такого универсального мотора — мотор болгарки).
Коллекторный двигатель постоянного и переменного тока
В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.
Что такое коллекторный двигатель?
Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).
Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)
В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).
Виды КД
Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:
- Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
- Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.
Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:
- независимыми;
- параллельными;
- последовательными;
- смешанными.
Разобравшись с видами, рассмотрим каждый из них.
КД универсального типа
На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.
Конструкция универсального коллекторного двигателя
Обозначения:
- А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
- В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
- С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
- D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
- Е – Вал якоря.
У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.
Схема универсального коллекторного двигателя
Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.
Особенности и область применения универсальных КД
Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:
- снижение КПД;
- повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.
Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.
Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.
КД с индуктором на постоянных магнитах
Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.
Конструкция коллекторного двигателя на постоянных магнитах и его схема
Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.
Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.
КД на постоянных магнитах с игрушки времен СССР
К числу преимуществ можно отнести следующие качества:
- высокий момент силы даже на низкой частоте оборотов;
- динамичность управления;
- низкая стоимость.
Основные недостатки:
- малая мощность;
- потеря магнитами своих свойств от перегрева или с течением времени.
Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.
Независимые и параллельные катушки возбуждения
Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).
Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения
Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.
Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.
Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.
Положительные черты:
- отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
- высокий момент силы на низкой частоте вращения;
- простое и динамичное управление.
Минусы:
- стоимость выше, чем у устройств на постоянных магнитах;
- недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.
Последовательная катушка возбуждения
Схема такого КД представлена на рисунке ниже.
Схема КД с последовательным возбуждением
Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.
Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.
Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.
Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:
- высокую стоимость в сравнении с аналогами на постоянных магнитах;
- низкий уровень момента силы при высокой частоте оборотов;
- поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
- работа без нагрузки приводит к поломке КД.
Смешанные катушки возбуждения
Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.
Схема КД со смешанными катушками возбуждения
Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.
При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.
Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.
Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:
- не устаревают магниты, за отсутствием таковых;
- малая вероятность выхода из строя при нештатных режимах работы;
- высокий момент силы на низкой частоте вращения;
- простое и динамичное управление.
Почему бесщеточные электродвигатели набирают популярность?
Все больше самых различных моделей электроинструментов применяют на себе бесщеточные электродвигатели. Дело доходит даже до отбойных молотков
Прогресс не стоит на месте, то и дело внедряются новые разработки, благодаря которым техника становится лучше и совершеннее. Так, на смену классических электрических двигателей постепенно приходят бесщеточные (вентильные). Стоит подробнее рассказать о том, по какому принципу они работают, чем отличаются от обычных и в чем их превосходят.
Принцип работы бесщеточного двигателя
В бесщеточном двигателе щеточно-коллекторный узел заменен полупроводниковым коммутатором. Он работает за счет электрических приводов, которые создают магнитное вращающееся поле. Это конструкция нового типа, в которой обмотки на статоре или элементах ротора нет. Разработка такого двигателя – результат использования материалов с большой коэрцитивной силой и уровнем магнитного насыщения, позволяющим получить сильное магнитное поле.
Отсутствие обмотки ротора и механических коммутационных элементов – те технические решения, которые позволяют создавать надежные двигатели по доступной цене. Эти решения существенно упрощают сам процесс их изготовления.
Бесщеточный двигатель может работать как на переменном, так и на непрерывном токе. В случае с непрерывным током он похож на коллекторный двигатель, но у последнего более сложная конструкция, так как основа непременно содержит электронный коммутатор.
Характерные особенности и преимущества бесщеточных двигателей
Бесщеточный двигатель имеет функционал щеточного, но превосходит его по ряду параметров. Единственным его недостатком можно назвать то, что по стоимости он пока превосходит аналоги с классическим мотором, но этот момент в полной мере компенсируется большим перечнем достоинств устройства. Основные преимущества механизма:
- эффективность;
- при намагничивании нет изменений, как и при утечке тока;
- энергонасыщенность;
- скорость вращения и вращающий момент полностью соответствуют;
- большой диапазон смены частоты вращения;
- скорость не зависит от центробежной силы;
- нет узлов, которые нужно часто обслуживать;
- в конструкции применяются легкие и небольшие магниты;
- не нужны коммутатор и обмотка возбуждения.
Сферы применения бесщеточных двигателей
Вентильные двигатели постоянного тока, как правило, применяются для оборудования с мощностью не выше 5 кВт. Для оборудования мощнее использовать такие двигатели нецелесообразно. Постоянные магниты в бесщеточных моторах очень чувствительны к воздействию мощных полей и высоких температур, что нехарактерно для щеточных и индукционных аналогов.
Бесщеточные двигатели надежны и хорошо управляемы, поэтому они используются повсеместно, как для мелких механизмов, так и для крупных. Они применяются в автомобильных приводах, электрических мотоциклах, компьютерах, электроинструменте, бытовой технике. Двигатели очень востребованы в промышленности, авиационной технике. Благодаря отсутствию коллекторного узла такие двигатели можно использовать даже в опасных условиях, местах с повышенным уровнем влажности.
Metabo выходит на новый уровень, внедряя бесщеточные двигатели в свою технику
Компания Metabo летом 2019 года презентовала широкой аудитории инновационную для отечественного рынка серию отбойных молотков и сетевых перфораторов SDS-Max. Устройства этой линейки оснащены бесщеточными двигателями, что выгодно отличает их от большинства аналогов. В сетевом инструменте такие двигатели пока применяются не слишком часто, особенно если инструмент очень мощный.
Сетевые инструменты с бесщеточными двигателями обладают всеми теми же преимуществами, что и аккумуляторные инструменты. Ключевые достоинства:
- Бесколлекторная схема повышает КПД мотора. Если сравнить бесщеточный перфоратор Metabo с обыкновенным, то при равном потреблении сетевой мощности оборудование Metabo будет меньше греться и выполнит больше функций.
- Высокая надежность. Инструмент с вентильным двигателем имеет более длительный срок эксплуатации, чем обычный, и не нуждается в частом обслуживании. В нем не нужно будет менять щетки, поэтому расходы на ремонт и обслуживания будут существенно снижены. По технике с высоким уровнем вибрации, как отбойные молотки и перфораторы, преимущество отсутствия щеток в двигателе особенно заметно. Из-за колебаний, однозначно возникающих при долблении и бурении, срок службы щеток в разы сокращается. Бесщеточным перфораторам и отбойным молоткам Metabo это не грозит.
- Частоту вращения мотора легко регулировать и поддерживать на необходимом уровне, даже при увеличении нагрузки, перепадах напряжения, ухудшении формы напряжения. Бесщеточные перфораторы и отбойные молотки Metabo будут высокопроизводительны даже при эксплуатации в сложных условиях.
Бесщеточные двигатели обладают массой преимуществ, потому сфера их применения необычайно широка, они используются даже в космической промышленности и ракетостроении. Работающие на таких моторах механизмы с каждым днем становятся популярнее в самых разных сферах.