Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Камский филиал

Камский филиал

С использованием пермских ракетных двигателей были успешно выведены на космические орбиты более 300 космических аппаратов, в том числе станции «Салют», станция «Мир» и сегменты МКС, «Луноход-1» и «Луноход-2».

Днем начала отсчета истории пермских ракетных двигателей считается 12 марта 1958 г. В этот день приказом Совнархоза Пермского экономического административного района было создано специальное производство по изготовлению жидкостных ракетных двигателей на Заводе имени Я.М. Свердлова. Главной задачей нового производства стало освоение двигателей РД-214 разработки НПО Энергомаш для баллистической ракеты средней дальности ракеты Р-12 и ракеты-носителя «Космос». В январе 1959 г. пермский РД-214 с успехом выдержал проверку на стенде ОКБ-456 (сейчас АО «НПО Энергомаш имени академика В.П. Глушко») в Химках. С этого момента в Перми началось серийное производство жидкостных ракетных двигателей. В 1962 г. в Перми приступили к освоению серийного производства двигателя РД-253 разработки НПО Энергомаш для ракеты-носителя «Протон». Первое летное испытание двигателей РД-253 пермского производства состоялось в 1967 г. Последний 245-й комплект серийных двигателей РД-253 был использован при пуске ракеты-носителя «Протон» в 1992 г. На смену этим двигателям пришли их модифицированные варианты: РД-275 (14Д14) и РД-276 (14Д14М).

В настоящее время в филиале ведутся работы по конструкторскому сопровождению серийного производства двигателей, авторскому надзору за изготовлением, испытанием и эксплуатацией двигателей, совершенствованию узлов и агрегатов, созданию новых модификаций двигателей, проведению их отработки и выпуску конструкторской документации.

На предприятии также осваивается выпуск деталей и узлов ракетных двигателей РД-191 для нового семейства ракет-носителей «Ангара».

Жидкостные ракетные двигатели РД-276

Двигатель РД-276 (14Д14М) является форсированной по тяге модификацией двигателя РД-275 (14Д14).

Серийное производство двигателя РД-276 начато в 2006 году.

Двигатель РД-276 является основной продукцией ОАО «Протон-ПМ», его удельный вес в общем объеме производства составляет 75–80 %. На предприятии осуществляется полный цикл изготовления РД-276 от заготовок до окончательной сборки и огневых испытаний.

Особенности двигателя РД-276:

• мощный однокамерный жидкостный ракетный двигатель с дожиганием генераторного газа;

• в составе комплекта из 6 штук входит в двигательную установку первой ступени ракет-носителей тяжелого класса серии «Протон»;

• коэффициент надежности двигателя: 0,998.

Агрегаты жидкостного ракетного двигателя РД-191

ОАО «Протон-ПМ» участвует в кооперации по выпуску кислородно-керосинового двигателя нового поколения РД-191. На предприятии освоено и начато изготовление отдельных агрегатов двигателя.

Двигатель предназначен для использования в двигательных установках 1 ступеней разрабатываемого ФГУП «ГКНПЦ им. М.В. Хруничева» семейства перспективных экологически чистых ракет-носителей «Ангара» легкого, среднего и тяжелого классов.

NASA предложили ядерный двигатель

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение – ядерный тепловой двигатель (NTP). Его использование позволит людям добраться с Земли до Марса всего за три месяца. По словам руководителя USNT Майкла Идса, «ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими двигателями, используемыми сегодня, а это означает, что они будут летать дальше и быстрее, сжигая при этом меньше топлива, что позволит человечеству уйти с околоземной орбиты в дальний космос».

USNT предлагает классическое решение – ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу. Одна из основных проблем при создании такого типа двигателей – найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2400 градусов Цельсия. Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов. Той же цели – защите экипажа – служит особая архитектура ракеты, максимально разделяющая пилотируемую часть и ядерный двигатель. Запас жидкого водорода, хранящийся между двигателем и зоной экипажа, будет блокировать радиоактивные частицы, действуя как хороший радиационный экран. Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли – он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Ядерный ракетный двигатель не новинка. В США в 1960-х гг. существовал проект NERVA – совместная программа Комиссии по атомной энергии США и NASA по созданию такого двигателя, продолжавшаяся до 1972 г. Ее результатом стала демонстрация реальности использования подобного двигателя для полета к Марсу. Сейчас наибольший интерес вызывают проекты создания транспортных модулей для полетов на Луну, Марс и в дальний космос. Такие проекты есть и в США, и в России, говорит эксперт в области ядерной физики и популяризатор ядерных технологий Дмитрий Горчаков: «Проект USNT предполагает, что ядерный реактор будет использоваться как источник тепла, более эффективный, чем химическое топливо, для нагрева рабочего тела и ускорения ракеты уже в космическом пространстве. Однако мощности проекта не указываются».

В России уже более 10 лет силами «Роскосмоса» и «Росатома» ведется разработка транспортно-энергетического модуля с ядерным реактором небывалой для космических аппаратов мощности – в несколько мегаватт (тепловых), что в десятки раз выше любых когда-либо запущенных в космос реакторов. Он может использоваться как в качестве источника электроэнергии для самого корабля или космической базы, так и для питания электроэнергией ионных двигателей, уже использующихся в космонавтике. Однако концепция этого проекта не раз менялась, а проблемы с финансированием и отсутствие внятных планов его использования пока вызывают сомнения в том, что в ближайшие годы работа над аппаратом будет активно продвигаться.

Читать еще:  Что такое модулятор двигателя

Куда ближе к реализации другой космический реактор – американский Kilopower электрической мощностью до 10 кВт. Как и российский проект, это не ядерный двигатель, а источник электроэнергии. Он уже испытывается в железе и вполне может стать первым мощным ядерным источником энергии, отправившимся в космос в XXI в. для питания лунной или марсианской базы или космического корабля с ионными двигателями.

Как это работает. Ракетный двигатель

Фото: Объединенная двигателестроительная корпорация

Полеты в космос, одно из самых вдохновляющих достижений человечества, невозможны без ракетного двигателя. С одной стороны, принцип его работы максимально прост, а с другой – всего несколько стран могут похвастаться ракетными двигателями собственного производства.

С момента старта Гагарина и по сей день все российские космонавты поднимаются с поверхности Земли двигателями РД-107/108. Серийное производство этих исключительно надежных двигателей продолжается на самарском предприятии Ростеха «ОДК-Кузнецов». Рассказываем о том, как устроен и работает космический двигатель-долгожитель РД-107/108.

Космически просто

И правда, объяснить принцип действия реактивных двигателей, к которым относятся и ракетные двигатели, можно даже ребенку. Для этого достаточно отпустить надутый воздушный шарик, который под влиянием выталкиваемого воздуха полетит в противоположном направлении. Движение и шарика, и ракеты происходит согласно третьему закону Ньютона: действию всегда есть равное и противоположное противодействие. Действие из ничего не возникает. Чтобы обеспечить действие, требуется энергия. В шарике это потенциальная энергия сжатого, в меру возможностей ваших легких, воздуха. Отличие ракеты заключается в том, что для выхода за пределы атмосферы требуется выбрасывать большие массы вещества с очень большой скоростью, что требует подвода огромного количества энергии. Это и делает ракетный двигатель.

Фото: Космический центр «Восточный» / Роскосмос

Самым распространенным типом двигателей для космических программ сегодня являются жидкостные ракетные двигатели (ЖРД), в которых в качестве топлива используются жидкие горючее и окислитель. К этому типу относится и российский РД-107/108.

Жидкостные двигатели – на сегодняшний момент самые мощные и универсальные ракетные двигатели, с помощью которых совершается большинство полетов в космос. Они отличаются высоким удельным импульсом, то есть при меньшей массе израсходованного топлива создают большую тягу. Кроме того, ЖРД позволяют активно управлять уровнем тяги и могут использоваться много раз. При этом по сравнению с другими видами ракетных двигателей, например твердотопливными, они значительно сложнее и дороже, поэтому основная их сфера применения – космонавтика и обеспечение выведения орбитальных и межпланетных аппаратов.

Как работает жидкостный ракетный двигатель

Чтобы получить полезное действие, достаточное для прорыва в космос, нужно получить большое количество энергии − эффективно сжечь большое количество топлива. Как известно, любой процесс горения представляет собой химическую реакцию окисления. И если на Земле для других видов тепловых двигателей в качестве окислителя можно использовать атмосферный кислород, то для ракетного двигателя, и тем более в космосе, окислитель и горючее надо иметь непосредственно на ракете, и лучше всего в максимально плотном и удобном для подачи жидком виде. В РД-107/108 в качестве окислителя используется жидкий кислород, а в качестве горючего – керосин.

Фото: Объединенная двигателестроительная корпорация

В камере сгорания подаваемые специальными насосами в нужном количестве и с необходимым давлением окислитель и горючее смешиваются и сгорают. Горячие (с температурой в несколько тысяч градусов) продукты сгорания в конструкции особого профиля – сверхзвуковом сопле Лаваля – разгоняются до многократно сверхзвуковых скоростей и уходят в пространство. Если умножить сумму секундных расходов масс горючего и окислителя на скорость выхода продуктов сгорания из сопла, можно в первом приближении получить силу тяги двигателя. Так, в общих чертах, можно описать схему работы жидкостного ракетного двигателя.

Устройство РД-107/108

Двигатель РД-107/108 состоит из четырех камер сгорания, турбонасосного агрегата, газогенератора, испарителя азота для наддува баков ракеты и комплекта агрегатов автоматики. Для управления полетом ракеты на двигателях имеются рулевые камеры: два на РД-107 и четыре на РД-108.

Несоизмеримые с возможностями существующих металлов температуры горения и продуктов сгорания, большое количество выделяемого тепла требуют охлаждения стенок камеры сгорания и сопла. В РД-107/108 эта инженерная задача решается двухстеночной конструкцией камеры сгорания и сопла и организацией охлаждения стенки со стороны горячего тракта подачей горючего (керосина) в камеру сгорания через межстеночные пространства.

Вторая особенность РД-107/108 − открытая схема сброса генераторного газа. Окислитель и горючее хранятся в отдельных баках и подаются в систему с помощью турбонасосного агрегата (ТНА). Для привода насосов горючего и окислителя используется турбина, в качестве рабочего тела для которой используется парогаз – продукт каталитического разложения пероксида водорода. Выхлопы турбины выбрасываются за срез сопла.

Рекордсмен космоса

Разработка двигателей РД-107 и РД-108 проходила в 1954–1957 годах под руководством выдающегося конструктора Валентина Глушко. Двигатели предназначались для первой в мире межконтинентальной баллистической ракеты Р-7, модификация которой в 1957 году доставила в космос первый искусственный спутник Земли. В 1961 году двигатели обеспечили первый полет человека в космос. На протяжении более 60 лет российские ракеты «Союз» поднимаются в небо с помощью двигателей РД-107/108 и их модификаций. Серийное производство двигателей налажено на самарском заводе «ОДК-Кузнецов», входящем в Объединенную двигателестроительную корпорацию Ростеха.

Программа РД-107/108 продолжает развиваться, создаются новые модификации – всего разработано 18 вариантов для различных программ. Сегодня модификациями двигательных установок РД-107А/РД-108А оснащаются I и II ступени всех ракет-носителей среднего класса типа «Союз». Все пилотируемые и до 80% грузовых космических кораблей в России взлетают благодаря этим двигателям.

РД-107/108 уже поставил свой космический рекорд по долголетию. Конечно, когда-нибудь и его время пройдет, но сегодня запас для совершенствования двигателя еще не исчерпан.

Новости

Наклонный стенд «ОДК-Кузнецов» испытал двигатели для ракет в шеститысячный раз

Все ракетные двигатели производства «ОДК-Кузнецов» перед отправкой заказчику, АО «РКЦ-Прогресс», проходят обязательные огневые испытания на одном из специализированных стендов. По словам ветерана ракетного производства ПАО «ОДК-Кузнецов» (в начале 60-х гг. старшего инженера п/я №32, а в настоящее время ПАО «ОДК-Кузнецов») Игоря Синотина, ракету-носитель с первой женщиной-космонавтом Валентиной Терешковой вывели на околоземную орбиту двигатели, испытанные именно на этом стенде в самом начале его эксплуатации.

Читать еще:  Бмв н63 двигатель характеристики

Стенд предназначен для испытаний серийных двигателей производства «ОДК-Кузнецов» — РД-107А/РД-108А для I и II ступеней ракет-носителей типа «Союз». «Наклонный» стенд оборудован двумя рабочими местами – для параллельных контрольно-технологических испытаний рулевых и маршевых ракетных двигателей. Конструктивная особенность стенда заключена в расположении двигателя на нем под углом 20 градусов к горизонту.

«Это связано с тем, что изначально стенд предназначался для испытаний рулевых агрегатов, и размеры огневого отсека, где позднее стали монтироваться маршевые ракетные двигатели, не позволяли устанавливать их в строго вертикальном положении, — рассказывает руководитель испытательного комплекса ракетных двигателей Владимир Карповский. — Специалисты нашли техническое решение – установку изделия под небольшим углом, не влияющим на параметры процесса».

Системы измерения и управления стенда №2 за время его работы многократно модернизировались. Сегодня регистрация параметров работы двигателей осуществляется в автоматическом режиме. Конструкция стенда остается неизменной из-за ее удобства, безопасности и надежности. Системы стенда отвечают современным требованиям проведения огневых испытаний.

Решение о строительстве испытательного полигона для жидкостных ракетных двигателей было принято в 1958 году в связи с организацией их производства в Куйбышеве на заводе №24 им М.В. Фрунзе (в наст. вр. ПАО «ОДК-Кузнецов»). При участии главного конструктора ракетно-космических систем Сергея Павловича Королева для строительства была выбрана площадка «В» в районе 61-62 километра шоссейной дороги Куйбышев – Москва, село Винтай. В четвертом квартале 1958 года Главспецстрой приступил к возведению испытательного комплекса, которому решено было присвоить наименование «Химзавод» для открытой переписки. В настоящее время это – обособленное подразделение «Винтай» ПАО «ОДК-Кузнецов».

ПАО «ОДК-Кузнецов» является единственным предприятием Объединенной двигателестроительной корпорации, которое специализируется на создании ракетно-космической техники. Объем ее продаж в общем объеме выручки предприятия варьируется от 40 до 45% в разные годы.

Двигательными установками РД-107А/РД-108А и НК-33 производства ПАО «ОДК-Кузнецов» оснащаются первые и вторые ступени всех ракет-носителей типа «Союз». Доля предприятия в сегменте ракетных двигателей на российском рынке составляет 80% по грузовым пускам, по пилотируемым – 100%. Статистическая надежность двигателей – 99,9%.

Запуски ракет-носителей с двигателями, произведенными в «ОДК-Кузнецов», осуществляются с четырех космодромов: Байконур (Казахстан), Плесецк (Россия) и Куру (Французская Гвиана), «Восточный» (Амурская область).

ПАО «ОДК-Кузнецов» – ведущее двигателестроительное предприятие России, где осуществляется проектирование, изготовление, ремонт и сопровождение в эксплуатации авиационных, наземных и ракетных двигателей. Входит в состав Объединенной двигателестроительной корпорации. Предприятие включает три ключевых составляющих — конструкторское бюро, завод серийного производства двигателей и уникальную испытательную базу.

АО «Объединенная двигателестроительная корпорация» (входит в Госкорпорацию Ростех) – интегрированная структура, специализирующаяся на разработке, серийном изготовлении и сервисном обслуживании двигателей для военной и гражданской авиации, космических программ и военно-морского флота, а также нефтегазовой промышленности и энергетики.

Госкорпорация Ростех – одна из крупнейших промышленных компаний России. Объединяет более 800 научных и производственных организаций в 60 регионах страны. Ключевые направления деятельности – авиастроение, радиоэлектроника, медицинские технологиии, инновационные материалы и др. В портфель корпорации входят такие известные бренды, как АВТОВАЗ, КАМАЗ, Концерн Калашников, «Вертолеты России», ОДК, Уралвагонзавод, «Швабе» и др. Ростех активно участвует в реализации всех 12 национальных проектов. Компания является ключевым поставщиком технологий «Умного города», занимается цифровизацией государственного управления, промышленности, социальных отраслей, разрабатывает планы развития технологий беспроводной связи 5G, промышленного интернета вещей, больших данных и блокчейн-систем. Ростех выступает партнером ведущих мировых производителей, таких как Boeing, Airbus, Daimler, Pirelli, Renault и др. Продукция корпорации поставляется более чем в 100 стран мира. Почти треть выручки компании обеспечивает экспорт высокотехнологичной продукции.

Космические моторы. Главные разработки Валентина Глушко, известные на весь мир

2 сентября исполнилось 110 лет со дня рождения инженера, ученого и конструктора, занимавшегося разработкой ракетных двигателей и космических систем, — Валентина Петровича Глушко. При его непосредственном участии был разработан целый ряд двигателей, на которых до сегодняшнего дня летают космические носители «Союз» и «Протон», а также межконтинентальная баллистическая ракета «Воевода», которая известна на Западе как «Сатана». ТАСС собрал главные изобретения знаменитого конструктора ракетно-космической техники.

Первый электрический реактивный двигатель

Под руководством Глушко был разработан первый в мире электротермический реактивный двигатель. Опытный образец был создан в СССР — в Газодинамической лаборатории в Ленинграде, которой заведовал Глушко, в 1929 году.

В двигателе в камеру сгорания устанавливались специальные проводники (из железа, палладия других металлов), на эти проводники подавались кратковременные, но мощные импульсы электрического тока с определенной частотой. Сам процесс назывался «электрическим взрывом» — при прохождении разряда проводники в прямом смысле разрушались, выделяя водород, который истекал из сопла двигателя и создавал тягу. Позже работы по этим двигателям были свернуты из-за низкой мощности.

Впервые в советской космической промышленности электрореактивные двигатели (ЭРД), но с иным принципом, были применены значительно позже — в 1964 году в космос был отправлен спутник «Зонд-2», с шестью установленными плазменными двигателями ориентации.

В современной космической технике применяются различные ЭРД, например, ионный (ионизированный газ разгоняется в электрическом поле). Такие модели, как и первый двигатель Глушко, имеют малую тягу, но могут работать за счет низкого расхода рабочего тела чрезвычайно долго — до нескольких лет. В качестве маршевого ЭРД был, например, установлен на японском космическом аппарате «Хаябуса», запущенном для изучения астероида Итокава. ЭРД широко применяются на спутниках в качестве двигателей коррекции траектории.

Читать еще:  Что означает тормозить двигателем

Первые в СССР жидкостные ракетные двигатели

Под руководством Глушко после завершения работ по ЭРД впервые в отечественной космической промышленности была создана целая серия опытных ракетных двигателей, работающих на жидком топливе. Серия называлась ОРМ — опытные ракетные моторы. В качестве топлива в двигателях серии использовались керосин, бензин, толуол, другие вещества.

Советские ученые экспериментировали как со смешанными унитарными, так и с двухкомпонентными топливами. Первые образцы, работавшие на унитарном топливе (ОРМ-1 тягой всего 20 кгс), были крайне несовершенны и терпели отказы, вплоть до аварийных ситуаций — двигатели взрывались на стендах во время работы. В итоге был сделан выбор в пользу более безопасной двухкомпонентной схемы — отдельные баки для горючего, отдельные для окислителя.

Работы над двигателями серии ОРМ Газодинамическая лаборатория начала в 1930-х годах, и к 1933-му был создан достаточно мощный образец ОРМ-52 с тягой 300 кгс. Под этот двигатель был разработан целый ряд реактивных летательных аппаратов («РЛА-1», «РЛА-2» и так далее), но их образцы «в железе» не создавались. По задумке инженеров, РЛА должны были взлетать на высоту нескольких километров и выбрасывать контейнер с метеоаппаратурой, которая затем опускалась бы на землю на парашюте. ОРМ-52 прошел официальные государственные испытания, правда, только на стенде. На одном из запусков образца двигателя в 1933 году присутствовал начальник вооружения Красной Армии маршал Михаил Тухачевский и дал работе лаборатории Глушко положительную оценку.

В 1934 году коллектив Газодинамической лаборатории из Ленинграда был объединен с московской группой изучения реактивного движения (под руководством Сергея Павловича Королева) в Реактивный научно-исследовательский институт. Ученые совместными усилиями продолжили разработку двигателей и носителей под них. Коллектив Глушко создал образцы с номерами от ОРМ-53 до ОРМ-102. В частности, двигатель ОРМ-65 разработки Глушко ставился на созданную Королевым крылатую ракету — «объект 212». В 1939 году прошли ее испытания — ракета с ОРМ-65 достигла высоты 250 м, когда преждевременно раскрылся ее парашют. Двигатель ОРМ-65 работал на азотной кислоте и керосине, развивал тягу 150 кгс и мог работать до 80 секунд.

Двигатели для баллистических и космических ракет

С 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО «Энергомаш» — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.

В 1954–1957 годах коллектив ОКБ-456 разработал жидкостные ракетные двигатели РД-107, которые впоследствии будут устанавливаться на знаменитую ракету Р-7, сконструированную коллективом ОКБ-1 под руководством Королева, так называемую королевскую семерку. Это была первая в мире полноценная межконтинентальная баллистическая ракета с максимальной дальностью полета 8 тыс. км и одним термоядерным зарядом мощностью 3 мегатонны. Первый запуск Р-7 состоялся 15 мая 1957 года, на вооружение Ракетных войск стратегического назначения она была принята в январе 1960-го.

На базе Р-7 был создано целое семейство ракет космического назначения. В частности, знаменитый «Восток», на котором 12 апреля 1961 года в космос отправился Юрий Гагарин. Модификации этой ракеты используются до сих пор — с грузовыми кораблями и спутниками в космос стартуют ракеты серии «Союз-2», с пилотируемыми — «Союз-ФГ» (со следующего года запуски космонавтов будут переведены на «Союз-2»). До сих пор на этих ракетах используются модификации двигателей, разработанных Глушко: версии РД-107 для боковых и центрального блока первой ступени и варианты РД-108 — для второй ступени.

Также сотрудники ОКБ-456 под руководством Глушко создали двигатель РД-253, который с изменениями и сейчас используется в самой массовой серии советских и российских тяжелых грузовых ракет «Протон». Последний вариант — «Протон-М» — использует на первой ступени шесть двигателей РД-276, которые являются глубокой модернизацией РД-253 Глушко.

Параллельно известный конструктор работал над двигателями для советских баллистических ракет, появившихся после Р-7. В частности, самая мощная на сегодняшний день и стоящая на вооружении РВСН тяжелая межконтинентальная ракета «Воевода» использует на первой ступени двигатель РД-264, разработанный при непосредственном участии Глушко.

«ЭнергияБуран»

В 1974 году было создано НПО «Энергия» (сейчас Ракетно-космическая корпорация «Энергия»), в новую организацию вошло Центральное конструкторское бюро машиностроения (ОКБ-1, переименованное так после смерти Королева), а также КБ «Энергомаш» (бывшее ОКБ-456). Глушко стал главным конструктором «Энергии», название которой, по некоторым данным, он и придумал.

Несмотря на все его усилия, НПО «Энергия» не получило заказ от государства на разработку двигателей под ракету сверхтяжелого класса Н-1 для советской лунной программы. Идеи конструктора были отклонены из-за токсичности предложенных им компонентов топлива. Позже он в своих письмах не оставляет планов покорения Луны, в частности, предлагает руководству страны в течение десяти лет разработать и создать систему доставки космонавтов к естественному спутнику Земли и орбитальный лунный модуль весом 60 тонн, который обеспечит высадку на Луну трех космонавтов. Однако этим планам не суждено сбыться.

В 1976 году внимание Глушко переключается на совсем другую тему — создание челнока «Буран» как ответа на запуски американских многоразовых кораблей «Спейс Шаттл». Отечественная многоразовая система «Энергия — Буран» создавалась под непосредственным руководством Глушко и по его проекту, именно он настоял на облике сверхтяжелой ракеты «Энергия» и предложил вид двигателя первой ступени РД-170. Успешный запуск «Бурана» прошел в ноябре 1988 года в автоматическом режиме.

Кроме двигателей, под руководством Глушко был выполнен ряд ключевых работ по направлению пилотируемой космонавтики. Так, конструктор возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз», им была предложена концепция многомодульной станции «Мир»: НПО «Энергия» выдвинула свои предложения по созданию новых орбитальных станций в 1976 году, эскизный проект «Мира» был готов в 1978 году.

Подготовила Валерия Решетникова

Ссылка на основную публикацию
Adblock
detector