Асинхронный двигатель сгорел причины
Асинхронный двигатель сгорел причины
6.4. Основные причины отказов электрических машин
6.4.1. Виды неисправностей и причины их появления
Электрические машины чаще всего повреждаются из-за недопустимо длительной работы без ремонта (износ), из-за плохого хранения и обслуживания, из-за нарушения режима работы, на который они рассчитаны. Все отказы можно разделить на две категории (по причине, повлекшей отказ) — электрические, механические.
К электрическим отказам относятся отказы по причине пробоя изоляции на корпус и между фазами, обрыва проводников в обмотке, замыкания между витками обмотки, нарушения контактов и соединений (паяных и сварных), недопустимого снижения сопротивления изоляции вследствие ее старения или чрезмерного увлажнения, нарушения межлистовой изоляции магнитопрово-дов, чрезмерного искрения в коллекторных машинах.
К механическим отказам относятся отказы по причине выплавки баббита в подшипниках скольжения, разрушения сепаратора, шариков или роликов в подшипниках качения, деформации вала ротора, образования глубоких дорожек на поверхности коллектора или контактных колец, ослабления крепления сердечников полюсов и статоров к станине, обрыва бандажей или их сползания, ослабления прессовки сердечников, ухудшения охлаждения машины из-за засорения охлаждающих каналов.
Неисправности и повреждения электрических машин, вызывающие отказ, не всегда удается обнаружить путем внешнего осмотра, так как некоторые из них (в основном электрические) носят скрытый характер и могут быть обнаружены только после соответствующих испытаний и разборки машины. Работа по предремонтному выявлению неисправностей и повреждений электрических машин называется дефектацией.
Рассмотрим характерные причины отказа электрических машин.
Пробой изоляции обмотки ротора на корпус приводит к медленному увеличению частоты вращения при пуске асинхронного двигателя. Ротор сильно нагревается даже при небольшой нагрузке. К тем же явлениям приводит нарушение изоляции между контактными кольцами и валом ротора.
Пробой изоляции между фазами приводит к короткому замыканию в обмотке. При коротком замыкании обмотки статора наблюдаются сильные вибрации двигателя переменного тока, которые прекращаются после отключения его от сети, сильное гудение, несимметрия токов в фазах, быстрый нагрев отдельных участков обмотки. В случае короткого замыкания обмотки фазного ротора наблюдается такой же эффект, как при нарушении изоляции между контактными кольцами и валом.
Обрыв проводников обмотки статора асинхронного двигателя вызывает несимметрию токов и быстрый нагрев одной из фаз (в крайнем режиме — обрыв фазы, ротор не вращается или его частота вращения мала, наблюдается сильный шум и быстрый нагрев двигателя).
Обрыв стержня короткозамкнутой обмотки ротора приводит к повышенным вибрациям, уменьшению частоты вращения под нагрузкой, пульсациям тока статора последовательно во всех фазах.
Витковое короткое замыкание обмотки статора или ротора приводит к чрезмерному нагреву электрической машины при номинальной нагрузке.
Нарушение контактов, паяных или сварных соединений в асинхронных двигателях эквивалентно по своему проявлению обрыву витков, стержней короткозамкнутых обмоток или фазы обмотки в зависимости от места нахождения данного соединения. Нарушение контакта в цепи щеток приводит к повышенному искрению между контактными кольцами и щетками.
Недопустимое снижение сопротивления изоляции может быть следствием сильного загрязнения изоляции, увлажнения и частичного разрушения, вызванных старением изоляции.
Нарушение межлистовой изоляции сердечников магнитопроводов приводит к недопустимому повышению температуры отдельных участков магнитопровода и всего магнитопровода в целом, повышенному нагреву обмоток, выгоранию части магнитопровода (пожар в стали).
Выплавка баббита в подшипниках скольжения и чрезмерный износ подшипников качения приводят к нарушению соосности валов электрической машины и механизма, к появлению эксцентриситета ротора. Выплавка баббита вызывает повышение вибраций электрической машины, которые не исчезают после отключения ее от сети. Износ подшипников качения приводит к появлению больших сил одностороннего притяжения, в результате чего двигатель не развивает номинальной скорости, а его работа сопровождается сильным гудением. Повышенные вибрации могут являться также следствием нарушения уравновешенности вращающихся частей (ротора, полумуфт или шкива).
Деформация вала ротора приводит к появлению эксцентриситета ротора и больших сил одностороннего притяжения.
Ослабление крепления полюсов и сердечников статоров приводит к повышенным вибрациям, исчезающим после отключения машины от сети.
Ослабление крепления листов магнито-провода вызывает шум и повышенные вибрации двигателя.
Засорение охлаждающих (вентиляционных) каналов приводит к недопустимому нагреву электрической машины или отдельных ее частей.
Выработка коллектора и контактных колец приводит к ухудшению коммутации, быстрому износу щеток и повышенному нагреву контактных колец и коллектора.
Как видно из анализа приведенных возможных неисправностей электрических машин и их влияния на рабочие свойства машин, одни и те же эффекты могут быть вызваны различными причинами. Это часто не позволяет однозначно назвать неисправность электрической машины по ее внешнему проявлению, а вынуждает ограничиться перечнем возможных неисправностей, которые будут уточняться при дефектации с целью последующего их устранения.
6.4.2. Выбор защиты электродвигателей
Правильный выбор и настройка защиты электродвигателей позволяют продлить ресурс их работы, обеспечить безаварийную работу и повысить их надежность в эксплуатации. Однако применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки.
Предусматриваются следующие виды защиты электродвигателей напряжением до 1000 В:
1) защита от многофазных коротких замыканий и от минимального напряжения, а в сетях с глухозаземленной нейтралью — дополнительно от однофазных замыканий для двигателей переменного тока;
2) защита от коротких замыканий и от недопустимого повышения частоты вращения для двигателей постоянного тока;
3) защита от перегрузки для всех двигателей;
4) защита от асинхронного режима для синхронных двигателей.
Для электродвигателей переменного тока напряжением свыше 1000 В дополнительно предусматриваются следующие виды защит:
1) защита, действующая на сигнал и отключение при повышении температуры смазки или прекращении ее циркуляции для электродвигателей, имеющих принудительную смазку подшипников;
2) защита, действующая на сигнал и отключение при повышении температуры или прекращении вентиляции для электродвигателей, имеющих принудительную вентиляцию;
3) защита, действующая на сигнал при снижении циркуляции воды ниже заданного значения и на отключение при прекращении ее циркуляции для электродвигателей с водяным охлаждением обмоток и активной стали, а также имеющих встроенные воздухоохладители, охлаждаемые водой;
4) общая защита от многофазных замыканий для блоков трансформатор (автотрансформатор) — двигатель;
5) на синхронных электродвигателях должно предусматриваться автоматическое гашение поля. При этом для синхронных двигателей мощностью менее 500 кВт автоматического гашения поля, как правило, не требуется.
Для защиты электродвигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.
Защита от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска для ограничения длительности пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле. Защита должна действовать на отключение, или на сигнал, или на разгрузку, если последняя возможна.
Для двигателей с повторно-кратковременным режимом работы применение этой защиты не требуется.
Защита от минимального напряжения должна устанавливаться: для двигателей постоянного тока, которые не допускают непосредственного включения в сеть; для электродвигателей механизмов, самозапуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности; на многоскоростных двигателях ответственных механизмов, самозапуск которых допустим и целесообразен; защита от минимального напряжения должна автоматически переключать двигатель на низшую скорость.
Защита от асинхронного режима синхронных двигателей должна, как правило, осуществляться с помощью защиты от перегрузки по току статора для двигателей напряжением до 1000 В. Для двигателей с на пряжением выше 1000 В защита может осуществляться с помощью реле, реагирующего на увеличение тока в обмотках статора.
Причины перегрева электродвигателя и способы их устранения
Содержание
- Причины перегрева двигателя
- Превентивные меры, необходимые для защиты электродвигателя от перегрева
Перегрев электродвигателя – одна из самых распространенных неисправностей, последствием которой может быть выход агрегата из строя. Почему греется асинхронный электродвигатель и что необходимо сделать, чтобы этого не происходило?
Причины перегрева двигателя
Нагрев может быть спровоцирован самыми разными факторами. Чаще всего виной тому:
- Эксплуатация в недопустимом режиме. Устройство не должно долгое время работать при повышенной нагрузке, а также подвергаться механическим воздействиям (удары, резкие толчки, вибрация) – от этого нарушается целостность.
- Коррозия, вызванная резкими и частыми перепадами температур и повышенной влажностью. Уменьшение зазора между элементами из-за ржавчины приводит к тому, что электродвигатель не набирает обороты и греется.
- Несоблюдение правил хранения, монтажа и транспортировки. Следует четко следовать инструкциям, приведенным в паспорте.
- Повреждение изоляции обмотки. Оно может произойти при попадании под корпус инородных частиц или при небрежной транспортировке. Последствия бывают разные – локальные короткие замыкания, деформация вала, неравномерное вращение ротора, и как итог – перегрев.
- Эксплуатация при повышенном или пониженном напряжении в сети. Пытаясь найти ответ на вопрос: почему греется электродвигатель 3-хфазный, проверьте проводку и состояние розеток.
- Засорение вентиляционных каналов. Чтобы этого избежать, достаточно регулярно проводить техосмотр и чистку двигателя.
- Постоянная слишком высокая/низкая температура в помещении, где функционирует двигатель.
- Разрушение подшипника. Признаки данной неисправности – неподвижность или плохое прокручивание ротора при включении устройства, полное заклинивание ротора и статора и нагрев корпуса.
В большинстве случаев предотвратить нагрев обмотки электродвигателя можно, просто строго соблюдая правила эксплуатации. Иногда достаточно выключить его и оставить в состоянии покоя на некоторое время. Если же элементы уже повреждены, требуется их починка или замена.
Превентивные меры, необходимые для защиты электродвигателя от перегрева
Конечно, лучше не доводить агрегат до поломки. Для этого следует принять меры, обеспечивающие защиту электродвигателя от перегрева:
- Не допускайте перегрузки устройства.
- Если двигатель пока не эксплуатируется, храните его в помещении с приемлемой температурой и влажностью.
- Периодически проверяйте состояние узлов.
Если механизм и корпус часто и сильно нагреваются, следует выявить причины этого и устранить их:
- Заменить подшипник.
- Перемотать обмотки.
- Отчистить детали от ржавчины.
- Сменить изоляцию обмоток.
- Прочистить каналы вентиляции.
В «запущенных» случаях придется отнести агрегат в ремонтную мастерскую.
Знать причины перегрева двигателя и способы их устранения необходимо для того, чтобы, во-первых, не допускать самого перегрева, во-вторых, уметь самостоятельно определить неполадку и исправить ее, если это в ваших силах.
Неисправности электрооборудования и способы их устранения — Работа асинхронного двигателя при неноминальных условиях
Содержание материала
- Неисправности электрооборудования и способы их устранения
- Устройство силового трансформатора
- Принцип действия трансформатора, хх и кз
- Пускорегулирующая аппаратура
- Устройство электрических машин постоянного тока
- Принцип действия генератора и двигателя постоянного тока
- Двигатели постоянного тока с различными системами возбуждения
- Устройство синхронных машин
- Низкое сопротивление изоляции обмоток электрических машин
- Пропитка и сушка обмоток электрических машин
- Сушка обмоток силовых трансформаторов
- Способы сушки обмоток силовых трансформаторов
- Определение качества трансформаторного масла
- Механические неисправности электрических машин
- Работа асинхронного двигателя при неноминальных условиях
- Внутренний обрыв одной фазы статора асинхронного двигателя
- Другие неисправности асинхронного двигателя
- Неисправности обмоток статора и ротора асинхронного двигателя
- Соединение обмотки асинхронного двигателя с корпусом
- Междуфазное замыкание двигателя
- Маркировка выводных концов электрических машин переменного тока
- Определение паспортных данных асинхронного электродвигателя
- Установки повышенной частоты из двух асинхронных машин и их неисправности
- Неисправности машин постоянного тока и способы их устранения
- Маркировка выводных концов машин постоянного тока, паспортные данные
- Неисравности синхронных машин и способы их устраненияе
- Неисправности силовых трансформаторов и способы их устранения
- Разборка и сборка, маркировка выводных концов трансформатора
- Неисправности пускорегулирующей аппаратуры и способы их устранения
- Вопросы по технике безопасности при испытаниях и ремонте электрооборудования
НЕИСПРАВНОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И СПОСОБЫ ИХ УСТРАНЕНИЯ
Работа асинхронного двигателя при неноминальных условиях
Отклонение напряжения питающей сети от номинального значения. Напряжение сельских электрических сетей колеблется в значительных пределах. Допускается отклонение напряжения у потребителей ±7,5%.
При пониженном напряжении сети уменьшается намагничивающий ток двигателя (ток холостого хода), снижается частота вращения ротора, увеличивается скольжение, растет роторный ток.
При пуске двигателя под нагрузкой резко уменьшаются пусковой и максимальный моменты и двигатель может не развернуться. Величина статорного тока при значительных нагрузках двигателя обыкновенно увеличивается, что ведет к перегреву обмоток статора и ротора. При значительном понижении напряжения двигатель может остановиться, при этом он потребляет очень большой ток.
При повышенном напряжении сети увеличивается намагничивающий ток двигателя (ток холостого хода), что ведет к перегреву активной стали статора; несколько увеличивается частота вращения; уменьшается скольжение; уменьшается роторный ток. Пусковой и максимальный моменты двигателя возрастают.
При значительных повышениях напряжения двигатель на холостом ходу потребляет ток, близкий к номинальному, а под нагрузкой величина статорного тока может быть выше номинального значения. Коэффициент мощности двигателя уменьшается, обмотка статора перегревается за счет теплопередачи от чрезмерно нагретой активной стали и от протекающего по ней тока.
Из сказанного следует, что отклонение напряжения сети от номинального значения чаще всего приводит к перегреву обмотки двигателя, перегрев обмотки в сильной степени сокращает срок службы изоляции. В конечном счете происходит пробой изоляции между обмоткой и корпусом, между фазами статора или между витками.
При отклонениях напряжения необходимо уменьшить нагрузку, чтобы ток статора был номинальным. В некоторых случаях можно увеличить или уменьшить напряжение путем перестановки анцапфного переключателя трансформатора. Иногда приходится увеличивать сечение проводов питающей сети.
Асимметрия напряжения питающей сети. При неравномерной нагрузке фаз сети напряжение становится асимметричным — неодинаковым между отдельными фазами. Асимметрия напряжения приводит к тому, что токи в фазах обмотки статора электродвигателя резко отличаются один от другого. Фаза с большим током может перегреваться выше допустимых пределов даже при небольшой асимметрии напряжения. Кроме того, перегревается активная сталь ротора двигателя. Асимметрия напряжения мало влияет на момент двигателя и на частоту вращения. Асимметрию напряжения можно обнаружить с помощью вольтметра, а также измерением величины тока в отдельных фазах двигателя, например токоизмерительными клещами. При асимметрии напряжения необходимо уменьшить нагрузку на электродвигатели и устранить неравномерную нагрузку фазы.
Обрыв фазы питающей сети. При обрыве фазы сети работающие трехфазные двигатели переходят в однофазный режим.
Если нагрузка двигателя до обрыва фазы была не более 60% номинальной, то двигатель продолжает работать с несколько худшими энергетическими показателями, частота вращения ротора уменьшается незначительно, температура обмоток находится в допустимых пределах. При больших нагрузках обмотка двигателя чрезмерно перегревается, а в отдельных случаях ротор двигателя останавливается и по двум фазам обмотки статора течет большой ток. Двигатель после остановки не может быть запущен даже на холостом ходу, так как в двигателе при однофазном токе получается пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания плавкой вставки, защищающей двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, то двигатель гудит и не разворачивается.
Отсутствующую фазу можно найти с помощью вольтметра. Для этого питающие провода отключают от двигателя и ставят gод напряжение, вольтметр следует включать между линейными проводами: первым и вторым, вторым и третьим, третьим и первым. Вольтметр покажет напряжение из трех включений только один раз на целых проводах.
При обрыве фазы питающей сети все двигатели останавливают и принимают меры к восстановлению нормального напряжения.
Сгорел электродвигатель. Поиск причины
Техническая диагностика и наладка оборудования — большая ответственность. И вот представьте, что после ремонта агрегата и выполненной Вами балансировки через два дня сгорает электродвигатель. Ваши чувства? Думаю, как минимум неприятно. А когда Вам электрики говорят что причиной является заклинившие подшипники — это похоже на камень в Ваш огород. Можно согласиться и винить во всем неожиданно отказавшие подшипники (бывает же такое?), а можно провести собственное расследование и докопаться до коренной причины.
Как Вы поняли, в данной ситуации оказался я сам. Речь пойдет о приточном вентиляторе, балансировка которого описана в этой статье . Поскольку после балансировки я выполнял вибродиагностику подшипников и дефектов там не увидел, то в их неожиданный отказ я не верю. Пришло время поиска информации и ее анализа.
От владельца оборудования узнаю историю вентагрегата. Когда-то у него был дефект подшипника. После его замены вентилятор некоторое время проработал и сгорел электродвигатель. Причина — заклинили подшипники. Электродвигатель был отправлен на перемотку, подшипники заменены и, собственно, на измерения вибрации меня и вызвали. Повышенная вибрация, балансировка и вот опять. То есть проблема повторилась.
Вероятность механического дефекта крайне низка и надо смотреть в сторону электромагнитных проблем. В спектрах вибрации ничего интересного — только оборотная составляющая и ни о каких замыканиях обмотки, обгоревших стержнях и т.п. речи нет. Но кое-что мне не понравилось еще при балансировке — частота вращения 45,1 Гц. Частотный преобразователь? Цех-владелец заверяет что его нет. Увеличено скольжение из-за высокой нагрузки? Сопротивление в вентиляционной сети высокое (может клапан какой не открыли)? Ответ — нет. Неправильная схема подключения электродвигателя? Я не специалист в электрических делах, а консультироваться с электриками смысла нет, у них вопрос уже решен — подшипники.
Поиск информации в интернете на тему последствий при неправильной схеме подключения электродвигателя конкретных ответов не дал. И более того, на форумах электриков по данному вопросу наблюдаются ожесточенные дискуссии. Но большинство электриков реагирует так же как и у нас на предприятии — смотри шильдик и не забивай себе голову. Самое главное что удалось почерпнуть: при соединении «треугольником» электродвигатель развивает максимальную активную мощность, при соединении «звездой» при том же питающем напряжении активная мощность в 3 раза меньше. То есть можно предположить вариант перегрузки электродвигателя из-за низкой мощности на валу. Невольно вспомнился опыт наладки аспирационных установок (промышленная вентиляция для отвода пыли от мест перегрузки сыпучих веществ с ее последующим отделением в фильтрах или циклонах). Когда-то давно на одном из объектов Белгородской области была задача выполнить наладку по воздуху существующей сети. Проект был настолько неудачным, что необходимо было перекрыть диафрагмой всасывающую линию на 70%. При этом сопротивление сети, а соответственно и нагрузка на электродвигатель вентилятора, серьезно возросло, что за считанные минуты привело к сильному нагреву электродвигателя — его корпус стал просто огненным. Такое влияние перегрузки на электродвигатель прочно отложилось в моей памяти.
Поэтому смотрим паспорт на электродвигатель: 5,5 кВт, 2860 об/мин, схема подключения «треугольник». Кабель откинут, идем с коллегой посмотреть схему подключения в борно. А там «звездой». И на шильдике электродвигателя схема подключения «звездой». Интересненько. Чему верить, данным из паспорта или из шильдика? Думаю, лучше довериться логике. Двигатель при таком соединении имеет минимальную мощность на валу. При перегрузке обороты должны падать. Электродвигатель должен обороты поддерживать, соответственно увеличивать крутящий момент на валу. Чем сильнее нагрузка, тем выше должно быть скольжение (а оно у нас почти 5 Гц!). Все это влечет за собой увеличении токов в обмотках, а соответственно и тепловых потерь в ней. В статье про балансировку я писал о сильной термической деформации крыльчатки обдува электродвигателя после предыдущего отказа. Поэтому вероятной причиной отказа является перегрев обмотки из-за подключения «звездой». То есть, я бы доверился паспорту.
Такими вот мыслями я поделился с персоналом цеха-владельца вентилятора. А в ответ услышал, что двигатели производства WEG у них горят не впервый раз. На холодильных машинах была та же беда — из-за неправильной схемы подключения указанной на шильдиках сгорело несколько электродвигателей. Завод свою ошибку полностью признал, извинился и заменил двигатели. По информации завода произошел брак при производстве этих самых шильдиков.
В это время электрики докладывают руководству, что электродвигатель разобран и причиной отказа являются подшипники. Я, в свою очередь, иду на три идентичные вентиляционные установки, которые в работе.
Вентилятор со сгоревшим электродвигателем назовем вентилятором №1. Остальные №2, №3 и №4. Измеряю вибрацию и температуру статора.
Вибрация вентилятора №2 (виброскорость, мм/с):
Направление | 1 | 2 |
---|---|---|
В | 1,4 | 1,2 |
П | 1,7 | 1,9 |
О | — | 2,3 |
Температура статора 65 °С.
Вибрация вентилятора №3 (виброскорость, мм/с):
Направление | 1 | 2 |
---|---|---|
В | 2,9 | 2,5 |
П | 2,2 | 1,8 |
О | — | 1,7 |
Температура статора 66 °С.
Вибрация вентилятора №4 (виброскорость, мм/с):
Направление | 1 | 2 |
---|---|---|
В | 2,0 | 1,6 |
П | 1,8 | 1,5 |
О | — | 1,8 |
Температура статора 57 °С.
По спектрам определяем частоты вращения (для вентилятора №1 взят спектр до балансировки):
Пересчитываем в об/мин:
Вентилятор | Частота вращения, об/мин |
---|---|
№1 | 2706 |
№2 | 2917 |
№3 | 2887 |
№4 | 2918 |
Как видим, у сгоревшего вентилятора №1 было на 200 об/мин меньше.
Далее, отключаем вентилятор №2, разбираем электросхему и вскрываем борно. Схема подключения — «треугольник».
Проблема идентифицирована — заводской шильдик, в соответствии с которым выполнялось подключение электродвигателя №1, содержит неправильную информацию. Всю информацию компаную в справочку и отправляю руководству заинтересованных цехов.
Теперь необходимо идти в обитель электриков и взглянуть на разобранный электродвигатель. Версия электриков: произошло разрушение сепаратора подшипника №2, сам сепаратор выбил защитную шайбу подшипника и повредил обмотку статора.
Вот подшипник №2 с отсутствующей защитной шайбой (видно что подшипник черный от перегрева):
Вот выскочившая из подшипника часть сепаратора (видим следы перегрева):
Выбитая защитная шайба подшипника:
А вот что сепаратор натворил:
И у меня возникает вопрос. Защитная шайба отсутствует только со стороны подшипникового щита. Как сепаратор попал в обмотку? Со стороны обмотки шайба на месте:
Ответ электриков немного поразил — там шайба тоже вылетела, это мы ее обратно засунули. В голове немой вопрос — зачем?
Переходим к подшипнику №1 (фото с щитом и без него):
Видны следы высоких температур. Подшипник заклинен. Но память мне напоминает, что когда с коллегой ходили смотреть схему подключения, я ему показывал деформированную крыльчатку обдува при этом вращая ее.
Ну и вишенка на торте. Со стороны подшипника №1 между обмоткой статора и корпусом выскреб детали развалившегося сепаратора. На вопрос о том как это туда попало электрики ответить не смогли.
То ли меня обманывают, то ли что-то .
Порадовало другое. При общении электрики уже не столь категорично были настроены по поводу схемы подключения. Конечно, я все карты открывать не стал, а лишь посоветовал сходить и посмотреть как подключены такие же электродвигатели.
Какой можно подвести итог? Два варианта — перегрев обмотки привел к замыканию, либо к перегреву подшипников с дальнейшей историей о повреждении сепаратором обмотки статора (верится в это крайне слабо). Конечно, прежде всего надо признать свою вину. Должен был сразу искать причину частоты вращения 45,1 Гц, а не балансировать. Электрики тоже лопухнулись — когда дважды сгорает один и тот же двигатель продолжать перематывать обмотку и менять подшипники не есть хорошо. Ну и вина завода-производителя электродвигателей WEG без сомнений. Для меня это был интересный опыт поиска причины такого вот отказа и я рад с Вами им поделиться.
Рекомендуемые статьи на эту тему