Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронные генераторы для локомобильных ТЭЦ

Асинхронные генераторы для локомобильных ТЭЦ

В статье «Грядет возрождение локомобильных ТЭЦ» («ТЭ», № 06 за 2016 год) автор рассказал о ТЭЦ электрической мощностью до 100 кВт, т. е. микромощного класса, в виде единого агрегата с паровой поршневой машиной и котлом.

Вопрос о применении асинхронных генераторов, в том числе создаваемых на базе распространенных и весьма надежных промышленных асинхронных электродвигателей с короткозамкнутым ротором, был обстоятельно изучен еще в середине прошлого века во Всесоюзном научно-исследовательском институте электрификации сельского хозяйства (ВИЭСХ) и положительно разрешен на ряде электростанций в практических условиях сельской энергетики (А. П. Златковский. Электрооборудование сельских электрических установок. – 2‑е изд., перераб. и доп. – М., 1957). Этот вопрос стал снова актуален в связи с тем, что при высокоточной стабилизации частоты напряжения (50±0,2 Гц в нормальном режиме, как требуется по ГОСТ Р 54149‑2010), в частности, классическим методом может оказаться выгоднее использовать именно асинхронный генератор, а не более сложный и дорогой синхронный.

На рисунке показан фрагмент упрощенной электротепловой схемы включения паропоршневого двигателя ППД, управляемого по сигналам системы автоматического управления ССАУ, из состава локомобильной ТЭЦ для привода асинхронного электрического генератора ЭГ. Поток острого водяного пара ВП1 подается в ППД от соответствующего парового коллектора ТЭЦ. Поток отработавшего в ППД водяного пара ВП2 утилизируется в бойлер (пароводяной теплообменник) для нагрева воды потребителям. Система стабилизации частоты напряжения – классическая: с выпрямителем ВН и инвертором ИН напряжения высокостабильной частоты (см. выше). Опционально в состав данной системы может входить резервная аккумуляторная батарея АБ. Пунктирной линией условно показана байпасная кабельная сеть.

У любого асинхронного электродвигателя, приводимого во вращение от какого‑либо первичного двигателя, при достижении сверхсинхронной (на 5‑10 % выше синхронной) частоты вращения ротора на выходных клеммах обмотки статора появляется небольшое напряжение частотой 50 Гц от остаточного магнетизма. Если к этим клеммам параллельно с нагрузкой подключить трехфазную батарею конденсаторов, то через последние будет проходить реактивный ток, являющийся для асинхронного генератора намагничивающим. Генераторное напряжение на выходных клеммах обмотки статора будет постепенно возрастать, пока не достигнет некоторого предельного своего значения, зависящего от электрических и магнитных характеристик асинхронной машины и величины емкости конденсаторов.

Емкость конденсаторов необходимо выбирать так, чтобы номинальное напряжение и активная мощность асинхронного генератора соответствовали этим параметрам при его работе в качестве электродвигателя. Емкость на единицу мощности генератора зависит от его напряжения, частоты вращения ротора, мощности и коэффициента мощности нагрузки (Г. Н. Алюшин, Н. Д. Торопцев. Асинхронные генераторы повышенной частоты. Основы теории и проектирования. – М., 1974; Н. Д. Торопцев. Асинхронные генераторы автономных систем. – М., 1998). Так, индуктивная нагрузка (к примеру, электродвигатель переменного тока), понижающая коэффициент мощности, вызывает резкое увеличение емкости конденсаторов для асинхронного генератора. Кроме этого, с целью стабилизации генераторного напряжения при постоянной частоте вращения первичного двигателя необходимо с повышением электрической нагрузки, особенно индуктивной, увеличивать и емкость конденсаторов. Кстати, здесь уместно отметить, что весьма перспективным и инновационным методом высокоточного поддержания частоты вращения только поршневых двигателей является метод Дубинина – Шкарупы для реализации явления самостабилизации оборотов вала двигателя без организации обратных связей (С. О. Шкарупа. Использование точечного преобразования для аналитического описания переходного процесса в тепловом двигателе дискретного действия// Динамика сложных систем. – 2010. – № 2. – С. 39‑42).

Стабилизировать напряжение асинхронного генератора при постоянстве частоты вращения ротора и изменении электрической нагрузки возможно следующими самыми простыми способами:

1. К генератору постоянно и параллельно подключают базовые конденсаторы, емкость которых необходима для его возбуждения в режиме холостого хода. Рабочие конденсаторы добавляют также параллельно с помощью трехфазного выключателя при нагрузочном режиме работы генератора. С изменением электрической нагрузки соответственно изменяется и суммарная потребная емкость конденсаторов, а напряжение на выходных клеммах обмотки статора, таким образом, стабилизируется.

2. Как и в первом случае, к выходным клеммам обмотки статора генератора постоянно подключают базовые конденсаторы, емкость которых соответствует режиму холостого хода. Электрическую нагрузку генератора разбивают на несколько групп, включаемых со щита управления отдельными выключателями. Параллельно с нагрузкой на каждую группу включают конденсаторы соответствующей емкости, чтобы компенсировать падение напряжения в генераторе, вызванное подключением данной электрической нагрузки. При включении выключателя одновременно включаются и дополнительные рабочие конденсаторы, а напряжение остается стабильным.

Напряжение асинхронного генератора допустимо регулировать путем изменения частоты вращения первичного двигателя. Оно весьма чувствительно к изменению числа оборотов ротора. Поэтому при чисто активной нагрузке генератора достаточно бывает регулировать частоту вращения первичного двигателя, чтобы напряжение приводимого им асинхронного генератора оставалось стабильным, несмотря на изменение активной нагрузки от холостого хода до максимально допустимой.

Преимущества асинхронного генератора как альтернативы синхронному состоят в том, что базовые асинхронные электродвигатели с короткозамкнутым ротором являются наиболее надежными электрическими машинами. Они просты по своей конструкции, их могут обслуживать и ремонтировать специалисты средней квалификации. Они дешевле полноценных синхронных генераторов с электронной системой возбуждения, стабилизации напряжения и его частоты. Асинхронный генератор не боится коротких замыканий.

Читать еще:  Двигатель f23a датчик давления масла

Наряду с отмеченными выше преимуществами асинхронный генератор с конденсаторным возбуждением, работающий в автономном режиме, имеет ряд недостатков. Они заключаются в том, что напряжение его весьма сильно колеблется при изменении электрической нагрузки и частоты вращения ротора. При индуктивной нагрузке потребная емкость конденсаторов резко возрастает. Как правило, по результатам исследований специалистов из ВИЭСХ, асинхронные генераторы можно использовать при работе электростанций, в том числе ТЭЦ, на чисто осветительную нагрузку, допуская лишь небольшую часть (до 25 %) силовой нагрузки. Однако следует учитывать, что современные энергосберегающие (компактные люминесцентные и светодиодные) лампы не являются чисто активной электрической нагрузкой, как лампы накаливания, и имеют некоторую реактивность. Мощность наибольшего электродвигателя, подключаемого к сети с асинхронным генератором, должна составлять не более 10 процентов от мощности самого генератора. Асинхронные генераторы с конденсаторным возбуждением рационально применять при мощностях до 15‑20 кВА. Однако этот предел нельзя рассматривать в качестве окончательного.
Мощность асинхронного генератора зависит от величины его скольжения: чем отрицательное скольжение больше, тем выше и мощность, развиваемая генератором. Отрицательное скольжение увеличивается с повышением частоты вращения ротора.
Асинхронные генераторы, которые возбуждаются от конденсаторов, являются самовозбуждающимися. Однако изложенную выше точку зрения, что причиной их самовозбуждения является остаточный магнетизм (остаточное магнитное поле) ротора, сегодня считают ошибочной. Установлено, что самовозбуждения асинхронных генераторов возможно достичь и без остаточного магнетизма ротора. Особенно этот эффект проявляется при высоких частотах вращения ротора.

Завершая рассмотрение вопросов работы и эксплуатации асинхронных генераторов с конденсаторным возбуждением, необходимо сказать несколько слов о современных конденсаторах. Среди отечественных типов можно отметить следующие: КБГ-МН (бумажные), БГТ (бумажные, термостойкие), МБГЧ (бумажные с металлизированными обкладками).

Перспективными для использования при работе с асинхронными генераторами являются отечественные пленочные конденсаторы типа К78–17 (Н. Д. Торопцев. Электрические машины сельскохозяйственного назначения: научно-практическое издание. – М., 2005).

Их металлизированная полипропиленовая пленка толщиной около 6,8 мкм обладает свойством самовосстановления. Такие конденсаторы предназначены для работы в цепях переменного тока номинальной частотой, равной 50 Гц. Номинальное напряжение – 250 и 450 В. По своему внешнему конструктивному исполнению эти конденсаторы выпускаются в цилиндрических корпусах. Массовые и габаритные показатели у конденсаторов типа К78–17 существенно лучше, чем у конденсаторов традиционных конструкций (см. выше). Например, при рабочем напряжении, равном 250 В, и емкости – 10 мкФ масса конденсатора типа МБГЧ составляет 270 г. При тех же электрических параметрах масса конденсатора типа К78–17 равна 80 г.

Таким образом, при электрической нагрузке локомобильных ТЭЦ, как и любых других электростанций микромощного класса, которая не является очень требовательной к качеству питающего напряжения и его частоты, асинхронные генераторы на базе электродвигателей с короткозамкнутым ротором и простым конденсаторным возбуждением могут стать реальной альтернативой дорогим и сложным по конструкции синхронным генераторам. Речь идет, в первую очередь, об осветительной нагрузке и электродвигателях для привода водяных насосов постоянного напора, ручного электроинструмента, пилорам.

Может ли работать асинхронный двигатель как генератор — как его использовать в домашних условиях?

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря. Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.
Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Читать еще:  Двигатель ld20 технические характеристики особенности

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.
Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.

Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать здесь.

На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются звездой или треугольником. Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным. Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.
На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.

Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. Такие источники электрической энергии применяются в домашних автономных электростанциях, приводимых в действие силой ветра или падающей воды.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. Однако при этом полностью теряется преимущество «простоты схемы».

Читать еще:  Что означает четырехтактный двигатель

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Пластмассы для генераторов и двигателей

Двигатели и генераторы должны иметь высокую эффективность и быть безопасными в эксплуатации. Для разработки, конструкторам нужны материалы, которые одновременно отвечают высоким электрическим, механическим и термическим требованиям. С Durostone® (GFRP) мы предлагаем армированный стекловолокном пластик, который особенно подходит для этих требований. Он обладает отличной электрической и механической прочностью и помогает вам создавать высокопроизводительные генераторы и двигатели.

Ваши преимущества

  • Высокая эффективность
  • Долговечность
  • Низкие эксплуатационные расходы
  • Высокая механическая устойчивость
  • Высокая термостойкость
  • Электрическая изоляция

Области применения

  • Эффективные полюсные генераторы
  • Турбогенераторы
  • Ветрогенераторы
  • Гидрогенераторы
  • Высокопроизводительные асинхронные двигатели
  • Синхронные двигатели
  • Двигатели постоянного тока

Примеры применения

Опорные кольца обмоточной головки

Опорные кольца обмоточной головки из Durostone® являются антимагнитными, электрически изолирующими и иногда обладают высокой механической упругостью. В зависимости от требований заказчика мы производим опорные кольца намоточной головки с разным направлением волокон и содержанием волокон для индивидуального определения модуля E и теплового расширения. Больше информации о опорных кольцах обмоточной головки

Пазовые клиенья из Durostone® (GFRP)

Обрабатываемые в строгих допусках по чертежам заказчика, пазовые клинья из нашего стеклопластика Durostone® обладают очень высокой механической упругостью и, следовательно, устойчивы к высоким механическим нагрузкам. Больше информации о Durostone®

Вкладыш шлица из Durostone® (GFRP)

Мы предлагаем вкладыши шлица и отслаиваемые вкладыши шлица из Durostone® длиной до 12 метров. Обладая высокой термостойкостью (категории тепла F или H) и механической прочностью, они очень эластичны и имеют длительный срок службы. При необходимости они доступны с очень низким коэффициентом трения с покрытием из арамида или PTFE. Больше информации о Durostone®

Получите техническую консультацию

На производительность и надежность материалов для

  • Механическое напряжение
  • Электрическое напряжение
  • Соответствие тепловым категориям, таким как F или H
  • Конструкционные требования
  • Размеры и допуски

Мы рады проконсультировать вас по выбору подходящих материалов для вашего конкретного применения. Просто свяжитесь с нами используя контактную форму внизу страницы.

Синхронный и асинхронный генератор

Электричество есть везде. Уже настал тот день, когда с этим сложно спорить. Даже там, куда не дотянулась централизованная электросеть, вовсю используются дизельные и бензиновые генераторы, которые получили широкое распространение не так давно, несмотря на почти двухсотлетнюю историю. Сегодня ассортимент генераторов очень велик, и существует множество способов их классификации, один из которых – классификация по степени синхронизации.

Применительно к электрогенераторам, синхронизация – это совмещение частоты вращения ротора и магнитного поля статора. Соответственно, если частота их вращения совпадает, такой генератор будет называться синхронным, а если нет, то асинхронным.

Синхронный генератор

Как известно, в дизельном или бензиновом генераторе электрический ток образуется после прохождения вращающегося магнитного поля через обмотку. При этом в синхронном электрогенераторе ротор представляет собой постоянный магнит или электромагнит. После запуска генератора он создаёт вокруг себя слабое магнитное поле, которое с увеличением оборотов становится сильнее. В конце концов, число оборотов ротора и магнитного поля синхронизируются, что позволяет получить на выходе наиболее стабильный ток.

В отличие от асинхронного генератора, синхронный агрегат уязвим при перегрузках, поскольку превышение допустимой нагрузки может вызвать сильный скачок напряжения в обмотке ротора. С другой стороны, важным преимуществом синхронного генератора является его способность кратковременно выдавать ток мощностью в 3-4 раза выше номинального, что позволяет подключать к нему такие устройства, как насосы, компрессоры, холодильники и т.д. Иными словами, он предназначен для электроприборов с высокими стартовыми токами. Несмотря на свою уязвимость, стоимость синхронных генераторов выше, чем асинхронных устройств.

Асинхронный генератор

Асинхронный генератор работает в режиме торможения: ротор вращается в одном направлении со статором, но скорость его вращения изначально выше. При этом частота вращения магнитного поля всегда остаётся неизменной, а регулированию поддаётся лишь скорость вращения ротора. Такие генераторы малоуязвимы при коротком замыкании и хорошо защищены от внешних воздействий (пыли, низкой температуры, влаги и т.д.).

Недостатками асинхронного генератора можно назвать обязательное наличие конденсаторов и зависимость частоты выходного тока от стабильности работы дизельного или бензинового двигателя. При этом стоимость такого устройства ниже, чем синхронного, но применяется оно реже. Асинхронные генераторы рекомендуется использовать для подключения устройств, не требующих высокого стартового напряжения и устойчивых к его перепадам.

Консультация

Заполните заявку, мы перезвоним в течение 30 минут и ответим на все ваши вопросы

Ссылка на основную публикацию
Adblock
detector