Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Примеры декларирования ТН ВЭД ЕАЭС, определение кода ТНВЭД

Примеры декларирования ТН ВЭД ЕАЭС, определение кода ТНВЭД

Коды ТН ВЭД, заменямые с 01.09.2015

Таблица сравнения экспортных ставок, действующих по 31.08.15 с вступающими в силу с 01.09.15

Поиск по списку товаров, прошедших таможенное оформление (более 700 000 примеров декларирования).

Для получения более подробной и актуальной информации, включая реальные цены, используйте информационный модуль «Среднеконтрактные цены» и таможенный калькулятор «Тамплат PRO+».

Примеры декларирования на сайте носят исключительно информационный характер и не могут служить основанием для принятия решения о классификации товара.

Страницы: 1

  • 3811900000 — ПРОДУКТ FD00031A — МНОГОФУНКЦИОНАЛЬНЫЙ ПАКЕТ ПРИСАДОК ДЛЯ ДИЗЕЛЬНОГО ТОПЛИВА ПРОТИВОДЕЙСТВУЕТ ЗАСОРЕНИЮ ИНЖЕКТОРОВ В ДИЗЕЛЬНЫХ ДВИГАТЕЛЯХ, ПРЕДОСТАВЛЯ
  • 3824999609 — БЫСТРЫЙ ЗАПУСК ДВИГАТЕЛЯ ДЛЯ КАРБЮРАТОРНЫХ, ИНЖЕКТОРНЫХ И ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ, ТЕСТЕР СИСТЕМЫ ПИТАНИЯ, В АЭРОЗОЛЬНОЙ УПАКОВКЕ: Б
  • 8409100000 — ЧАСТЬ ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ИСКРОВЫМ ЗАЖИГАНИЕМ — ИНЖЕКТОР (ТОПЛИВНАЯ ФОРСУНКА), ИЗГОТОВЛЕН ИЗ НЕДРАГОЦЕННОГО МЕТАЛЛА ГРАЖДАНСКО
  • 3824999609 — «»БЫСТРЫЙ ЗАПУСК ДВИГАТЕЛЯ»», АНТИКОРОЗИЙНОЕ ПОКРЫТИЕ, В АЭРОЗОЛЬНОЙ УПАКОВКЕ КОД ОКП 238440 БЫСТРЫЙ ЗАПУСК ДЛЯ БЕНЗИНОВЫХ (КАРБЮРАТОРНЫХ, ИНЖЕКТОРНЫХ)
  • 7304318009 — СУДОВОЕ СНАБЖЕНИЕ — ЗАПАСНЫЕ ЧАСТИ ДЛЯ СУДОВОГО ДВИГАТЕЛЯ НА М/С РАДИК БАШИРОВ: ИНЖЕКТОРНЫЕ ТРУБКИ ДЛЯ ПОДАЧИ ТОПЛИВА В ДВИГАТЕЛЬ ОТ ТОПЛИВНОГО НАСОСА
  • 8409990009 — ГАЗОВАЯ ФОРСУНКА (ИНЖЕКТОР). ТОВАР ВВОЗИТСЯ ИСКЛЮЧИТЕЛЬНО ДЛЯ СОБСТВЕННЫХ НУЖД КОМПАНИИ ДЛЯ РЕМОНТА ГАЗОВОГО ДВИГАТЕЛЯ CAT G16CM34. GASINJECTOR / ГАЗО

Устройство плавного пуска электродвигателя. Как это работает.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами «номинал в номинал». Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска

При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил. Тогда Iном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Читать еще:  Что такое барно двигателя

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

— некоторая электротехника может самопроизвольно отключаться;

— возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Есть отличная альтернатива устройству плавного пуска. Стоимость отличается, но и функциональные возможности расширенные.

Преобразователь частоты – это решение задачи, когда требуется регулирование скорости электродвигателя и автоматизация работы технологичного оборудования через обратную связь посредством датчика. При помощи преобразователя Вы сможете решить более сложные и разносторонние вопросы по автоматизации электропривода.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Устройство плавного пуска (УПП)

Электрические двигатели переменного тока с короткозамкнутым ротором отличаются простотой конструкции, невысокой стоимостью и являются самыми распространенными электрическими машинами. Однако, электродвигатели такого типа имеют недостатки, препятствующие их применению в ряде случаев.

При непосредственном пуске электродвигателя от коммутирующего электроаппарата момент на валу превышает номинальный в 1,5 – 2 раза, потребляемый двигателем ток в 3-8 раза.

Для того чтобы устранить эти недостатки, используют устройства плавного пуска или УПП (устройство плавного пуска). Эти устройства предназначены:

  • Для обеспечения плавного пуска и остановки.
  • Для снижения величины пускового тока.
  • Для синхронизации пускового момента с фактическим моментом нагрузки на валу.

До появления электронных устройств для ограничения пускового момента и тока широко применялись механические тормоза, муфты, реакторы, пусковые резисторы. Использование электронных УПП более эффективно. Уменьшение величины тока и момента при включении двигателя через устройство плавного пуска достигается плавным увеличением напряжения в обмотках электрической машины.

Сферы применения устройств плавного пуска

Прежде чем ознакомиться с параметрами выбора УПП, рассмотрим, при каких режимах пуска и условиях требуется установка этого электроаппарата.

По нагрузке и разности пусковых и номинальных токов различают следующие типы пусков электродвигателей:

  • Легкий пуск. При запуске электропривода ток не превышает номинального значения умноженного на три, переходной процесс длится не более 20 секунд. Для такого оборудования используют простейшие УПП.
  • Тяжелый пуск. В производственном оборудовании со значительной инерцией или с запуском под нагрузкой, токи возрастают более чем в 4 раза, длительность переходного процесса составляет более 30 секунд.
  • Особо тяжелый пуск. При таких условиях величина пускового тока может составлять 6-ти, 8-ми кратное значение от номинала. Разгон электродвигателя также занимает значительное время.

УПП применяются в составе электропривода различного производственного оборудования и технологических установках с тяжелыми и особо тяжелыми условиями пуска. Кроме того, их применение обосновано:

  • При ограниченной мощности электросети. Пусковые токи создают перегрузку, при которой падает напряжение, срабатывает защита, перегреваются и отключаются генераторы. В таких случаях установка УПП является решением проблемы. При этом следует учесть, что устройство снижает пусковой ток в лучшем случае в 2,5 раза. Если мощности сети недостаточно, следует установить частотный преобразователь.
  • При недопустимости быстрого пуска. При непосредственном запуске момент на валу электродвигателя гораздо выше номинального. Это приводит к ударным нагрузкам на механическую часть оборудования, вызывает его поломки. УПП обеспечивает ограничение пускового момента и с успехом решает эту проблему.

При срабатывании автоматического выключателя до того, как вал двигателя достигает номинальной скорости вращения, также же может помочь установка устройства плавного пуска.

  • На электроприводе насосных агрегатов. При пуске с повышенным моментом и резкой остановке насосных установок в сети возникают гидравлические удары, повреждающие запорно-регулирующую арматуру, контрольно-измерительные приборы, трубопровод. Плавный пуск и остановка агрегатов, которые обеспечивают УПП, позволяет избежать этих проблем.
  • На вентиляционном оборудовании. Высокий пусковой момент вызывает обрыв ременной передачи, увеличивает износ подшипников. Вентиляторы также требуют плавного запуска и остановки приводного двигателя.
  • На компрессорном оборудовании и центрифугах. Для привода такого оборудования необходимо согласование момента на валу и фактической нагрузки. Пульсации, возникающие при резком пуске и разгоне электродвигателя, отрицательно сказываются на работе таких промышленных установок.
  • На мельницах, дробильных установках и другом оборудовании с постоянным моментом нагрузки. Использование привода с УПП исключает механические удары при запуске.
  • На конвейерах и других промышленных установках с приводом через редуктор. Применение УПП снижает ударную нагрузку на шестеренки и продлевает срок службы оборудования.
Читать еще:  Что такое донской двигатель

Характеристики УПП

Основными критериями выбора УПП являются диапазон ограничения тока, степень защиты корпуса, допустимое количество пусков за единицу времени, номинальный ток и напряжение, допустимая мощность электродвигателя, возможность параллельного включения шунтирующего электроаппарата. Выбор устройства осуществляется по стандартным методикам.

При выборе УПП также необходимо учесть наличие следующих функций:

  • Запуск в функции тока или напряжения. Устройства плавного пуска с такой функцией применяют при ограниченной мощности питающей сети. Такие УПП позволяют осуществлять регулировку тока и избежать перегрева кабелей, сработки защиты, остановку генераторов, чувствительных к резким колебаниям потребляемого нагрузкой тока. Для технологического оборудования, где недопустим быстрый пуск с повышенным моментом, используют УПП с пуском в функции напряжения. Такие устройства плавно увеличивают напряжение в обмотках электрических машин. Для более точной регулировки используют УПП с обратной связью по току и напряжению.
  • Количество фаз. Для пуска электродвигателей используются УПП с регулировкой электрических параметров по одной, двум и трем фазам. Устройства первых двух типов используются для привода оборудования с нечастым запуском, так как несимметричная нагрузка в момент пуска отрицательно сказывается на работе электрической машины.
  • Наличие шунтирующего контактора. При завершении переходного процесса целесообразно отключить подачу тока через устройство плавного пуска, чтобы исключить перегрев симистров. Это достигается параллельным включением в цепь контактора, который замыкает силовые контакты после разгона электродвигателя. Существуют модели УПП, не предусматривающие параллельного подключения контакторов, однако, для мощного двигателя лучше выбрать устройство с шунтирующим коммутирующим аппаратом.
  • Функции защиты. Многие УПП имеют встроенную защиту от перегрева самого устройства, изменения частоты питающего напряжения, снижения величины выходного тока, а также функции отключения нагрузки при превышении времени разгона, обрыва фаз, неравномерной нагрузки. В некоторых моделях также возможно подключение датчика нагрева обмоток электродвигателя. Для защиты привода с УПП от коротких замыканий необходимы предохранители или автоматические выключатели.
  • Функции регулирования скорости. Существуют УПП, где реализована возможность снижения частоты вращения электродвигателя. Однако, УПП не заменяют частотный преобразователь. Регулировка скорости осуществляется ступенчато. При длительной работе на пониженной скорости УПП сильно перегревается. Устройство плавного пуска не обеспечивает долговременной работы двигателя в режиме пониженной скорости. Такие режимы применяются при регулировке и наладке производственного оборудования.
  • Режим торможения. Для приводов инерционного оборудования следует выбрать УПП с функцией торможения. В этом режиме на обмотки электродвигателя подается напряжение, вызывающее торможение электрической машины. Такие устройства применяют для подъемников, транспортеров, тяговых вентиляторов.
  • Контроль состояния байпасного контактора. При незамкнутых силовых контактах шунтирующего контактора по достижении номинальной частоты вращения ротора электродвигателя, УПП осуществляет отключение привода.
  • Пуск с максимальным моментом. Устройства плавного пуска с этой функцией подают на обмотки номинальное напряжение питающей сети. После резкого пускового толчка, напряжение ограничивается. Далее разгон электрической машины осуществляется в плавном режиме. УПП с такой функцией используется для приводов оборудования с включением под значительной нагрузкой.

Преимущества УПП

Включение УПП в состав электропривода дает следующие преимущества:

  • Возможность использования мощных двигателей при маломощных электрических сетях. Ограничение бросков тока позволяет избежать срабатывания защитных электроаппаратов, перегрева обмоток трансформаторов, питающих токоведущих линий, перегрузок и остановок генераторов, а также снижения напряжения в сети, которое негативно влияет на другие электроприемники. Использование УПП позволяет устанавливать промышленное оборудование с тяжелыми и особо тяжелыми условиями пуска при ограничении мощности сети питания, когда применение другого электрооборудования для снижения тока пуска невозможно.
  • Снижение износа электродвигателей. Пусковые токи вызывают перегрев обмоток, старение их изоляции, перегрев и коррозию контактных групп, а также к преждевременному износу коммутирующих аппаратов. Увеличение крутящего момента при прямом запуске приводит к увеличению нагрузки на подшипники и другие механические элементы электродвигателя. Плавный пуск позволяет продлить срок эксплуатации двигателей и увеличить промежутки между ТО (техническим обслуживанием) и ремонтами электрических машин.
  • Уменьшение износа промышленного оборудования. Использование УПП обеспечивает плавный разгон. Это снижет ударные нагрузки на шестеренчатые редукторы, ременные приводы и другие механизмы.
  • Обеспечение безопасности технологических процессов. Многие примышленные установки нельзя резко останавливать и запускать. Например, быстрый пуск насосных агрегатов приводит к гидроударам и возникновению аварийных ситуаций. Использование УПП снижает вероятность аварий.
  • Возможность отказаться от механических устройств для торможения, а также электротехнических устройств для ограничения тока. Устройство плавного пуска заменяют тормозные муфты, реакторы, а также другое оборудование.
  • Невысокая стоимость. Средняя стоимость УПП ниже цены частотных регуляторов. В ряде случаев установки УПП достаточно для корректной работы привода.
  • Наличие защиты от ненормальных и аварийных режимов работы. Некоторые модели УПП защищают от пропадания фаз, несимметричной нагрузки и других аномальных режимов.
  • Возможность встраивания в системы автоматизации. УПП с микропроцессорными устройствами управления поддерживают протоколы связи с удаленными ПК. Контроль и управление приводами с такими УПП можно осуществлять в автоматическом режиме.
  • Снижение электромагнитных помех. При регулировании пуска по всем трем фазам, уменьшается интенсивность магнитного поля, которое создается двигателем при пуске. При использовании УПП отпадает необходимость установки дополнительных фильтров на слаботочных линиях, чувствительных к наводкам.

Установка УПП дает неплохой экономический эффект. Он достигается снижением затрат на ТО и ремонт электродвигателей и технологического оборудования, экономии электроэнергии, расходов на закупку более мощных коммутирующих электротехнических устройств, дополнительную защиту.

Схема УПП

Схема наиболее распространенных УПП выполняется на базе ключей из встречно-параллельно включенных тиристоров.

Плавная регулировка напряжения на обмотках достигается постепенным изменением угла проводимости полупроводниковых элементов путем подачи импульсов на управляющие электроды. После достижения номинального напряжения на обмотках включается шунтирующий контактор. При торможении электрической машины вначале отключается параллельно включенный коммутирующий аппарат, затем с генератора пусковых импульсов поступают сигналы, постепенно уменьшающие угол проводимости тиристоров до полной остановки электродвигателя.

На рисунке представлена схема УПП с регулировкой по одной фазе. Такое устройство отличается невысокой стоимостью. Однако, при пуске возникает несимметричная нагрузка, увеличивается нагрев электромашины, возникают электромагнитные помехи. УПП такого типа используют для привода промышленного оборудования с нечастыми пусками.

Для оборудования с тяжелыми условиями запуска применяют УПП с регулировкой по 2-м фазам.

Для технологических установок с особо тяжелыми условиями запуска и частыми включениями и отключениями привода используют УПП с симисторными ключами на всех трех фазах и обратной связью по току или напряжению. Их использование не вызывает дисбаланса тока на фазах, увеличения электромагнитных помех при запуске и торможении электрической машины.

Почему аккумулятор разряжается сам собой? Разбираемся с током утечки

Многим знакома такая ситуация: машина два-три дня стоит на улице без движения, а при попытке в неё сесть и куда-то на ней уехать вместо бодрого звука вращения стартера слышны только щелчки обгонной муфты или не слышно вообще ничего. Сел аккумулятор. С чего бы? Почему он разряжается сам по себе? И что теперь делать: бежать за новым, заряжать этот, звонить другу или брать помощь зала?

По капельке по маленькой​

Простые времена кончились давно. Приблизительно в ту светлую эпоху, когда автомобили обзавелись электронными устройствами в виде магнитол, иммобилайзеров, охранных систем, навигаторов, радар-детекторов и прочих штучек, работающих от бортовой сети. И ещё не забываем про, например, электронные блоки управления двигателем, коробкой и другими узлами, которые тоже расходуют ток. Часть этих устройств потребляет электричество даже тогда, когда машина заглушена. Потребление у них маленькое и разрядить быстро АКБ не может. Но бывают три классические ситуации, когда потребление тока становится больше, чем надо.

Читать еще:  Chevrolet lacetti двигатель не заводится

Первая причина, по которой потребление тока становится слишком большим, это неправильная установка части этих устройств. Ту же саму магнитолу можно установить так, что она работать будет, но при этом где-то что-то будет замыкать. Про сигнализацию вообще молчу – там можно натворить очень много бед.

Вторая причина – обычная рассеянность. Можно забыть, что, например, нужно выключать свет в салоне или вытаскивать из прикуривателя видеорегистратор. Не все машины умеют «предупреждать» о невыключенном свете и отключать питание на прикуриватель после выключения зажигания. Впрочем, это не совсем наша ситуация.

Ну и третья причина – неисправность в цепи устройства или самом устройстве. Классический пример: горящая лампочка подсветки багажника. Вроде бы всё работает, но после двух-трёх дней простоя запустить мотор, может быть, уже не получится: если АКБ не совсем свежая, она за это время разрядится сильно. Кроме того, у старых автомобилей утечка может расти по причине не вполне исправной проводки. Где-то она потёрлась, где-то поплавилась, куда-то слазили кривые руки электрика дяди Васи… Причин много, а следствие одно – рост тока утечки и севшая АКБ. Так как узнать, всё ли в порядке с этим током на машине и что делать, если он слишком высок?

Ток против мультиметра

Единственный инструмент, который нам понадобится в работе, это мультиметр. Причём я использовал совсем не топовый инструмент, а какую-то балалайку за 140 рублей, которая способна показывать на экране циферки. Профессиональному электрику такой, наверное, не подойдёт, а нам, криворуким, самое то. Потому что в ходе нашей сегодняшней работы по неопытности мультиметр можно сжечь. Как это сделать (а точнее, не сделать)? Легко.

Итак, наша задача – замерить ток, который потребляет автомобиль в «режиме спячки». Для этого переводим мультиметр в режим изменения тока, в нашем случае – на 10 А. В нашем китайском мультиметре это максимально допустимый ток. Если ваш мультиметр покруче нашего (что, в общем-то, несложно), лучше поставить 20 А. Дело в том, что мультиметр надо включить в цепь, и через него пройдёт весь потребляемый ток. Ток утечки должен небольшим – максимум 80-90 мА, но в момент подключения мультиметра в разрыв цепи через него пройдёт ток всего электрооборудования, которое включится после замыкания цепи. Ток может доходить до 15 А и только через несколько секунд опускаться до нормы. Но этих нескольких секунд вполне достаточно, чтобы сжечь если не весь мультиметр, то хотя бы его предохранитель (если он есть).

Поэтому не слушайте тех, кто предлагает просто скинуть минусовую клемму и воткнуть в разрыв мультиметр, накинув один его провод на клемму АКБ, а второй – на снятый с клеммы провод. Конечно, по схеме подключение таким и должно быть, но лучше делать в несколько иной последовательности. А именно – один провод мультиметра подсоединить к клемме, второй – к проводу на этой клемме, и только после этого снять провод с клеммы АКБ. Таким образом можно избежать скачка тока в момент включения в цепь мультиметра.

Кроме того, этот способ позволяет избежать ещё одного неприятного момента: так как фактического разрыва цепи не происходит, нет необходимости проводить все операции с машиной, которые необходимы после отключения АКБ: настраивать магнитолу, время, работу стеклоподъёмников и проводить прочие адаптации.

Третий положительный момент – не надо ждать, пока «устаканятся» показатели тока утечки. Если разорвать цепь, а потом в разрыв включить мультиметр, первые минуты потребляемый ток будет большим из-за большого количества потребителей, которые возвращаются к жизни. «Проснётся» ЭБУ, начнут заряжаться конденсаторы, может начать работать климат-контроль (хотя бы самодиагностироваться или вращать заслонками), и как раз тут ток будет завышенным. И тогда придётся ждать, пока системы успокоятся. До полного «засыпания» электроники в сложных автомобилях может пройти и полчаса. А ждать полчаса – это скучно.

Идеально – это открыть капот, подключить мультиметр, зажать концевой выключатель капота, имитируя его закрытие, поставить машину на сигнализацию и ждать, что покажет мультиметр. В этом случае ток утечки будет ровно таким, какой он есть в то время, пока вы спите, а какая-то неисправность пожирает зарядку аккумулятора. Но обычно достаточно просто увидеть цифры, которые покажет мультиметр после пары минут работы в цепи. И кстати, не обязательно подключаться к минусовой клемме. Можно включить мультиметр и между плюсовой клеммой и её проводом, что я и сделал: доступ к минусу на конкретном автомобиле затруднён.

О чём говорят цифры?

Значение нормального тока утечки может заметно отличаться в зависимости от марки и комплектации автомобиля. Чем больше потребителей бодрствуют, тем больше будет ток. Какой-то одной цифры нормального тока нет. Я бы советовал придерживаться таких порядков: бюджетные автомобили – до 50 мА, средний несложный автомобиль – до 70 мА, автомобиль со сложной электроникой – до 100 мА. Само собой, и цифры, и деление машин несколько условны, но точнее сказать трудно. Если Киа Рио или Хёндэ Солярис ест больше 50 мА – есть повод искать утечку. Хотя если в нём стоит спутниковая сигнализация… Ладно, шучу.

Допустим, мультиметр показывает около 40 мА (как это получилось в нашем случае). Это абсолютно нормальный показатель. Можно возвращать клемму на место, убирать мультиметр и спать спокойно дальше.

Если мультиметр показывает слишком большой ток, нужно искать, что его там в машине потребляет. Для этого нужно выполнить всего одну нехитрую операцию: открыть блок с предохранителями и вытаскивать их по очереди, наблюдая за показаниями мультиметра. Если при одном вытащенном предохранителе ток утечки сильно снижается, значит, в цепи этого предохранителя и находится тот баловник, который поедает зарядку АКБ. Ну а дальше осталось проверить цепь и потребители проблемной сети. Если не знаете, что за предохранитель оказался у вас в руках, посмотрите на обратную сторону крышки предохранителей – на ней обычно бывает их схема.

Что не так?

В общем-то, на этом проверка тока утечки заканчивается. Но было бы неправильным не сказать об ещё одной вещи. Что делать, если утечку найти не удалось, а АКБ всё равно утром севший?

В первую очередь придётся проверять работу генератора. Вполне вероятно, что никакой запредельной утечки нет, а причина садящегося аккумулятора кроется в его обычном недозаряде. Кроме того, никаких предохранителей в цепи генератора обычно не бывает, так что замер тока утечки ничего в этом случае не даст. Поэтому переводим мультиметр в режим вольтметра, измеряем напряжение на клеммах АКБ, затем смотрим напряжение на клеммах после пуска мотора. Если там с работающим мотором и без включенных потребителей остаются все те же унылые 12-13 вольт, генератор пора ремонтировать.

Правда, если у него близок к концу диодный мост, без нагрузки он может показывать нормальное напряжение, а вот под нагрузкой сильно просаживаться. Но диагностика генератора с помощью мультиметра – это уже совсем другая история. Скучная, простая и тысячу раз разжёванная.

Ссылка на основную публикацию
Adblock
detector