Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Моторное масло SAE 5W-20

Моторное масло SAE 5W-20

Содержание

  • 1. Что означает маркировка 5W-20
  • 2. Когда лучше применять масло 5W-20
  • 3. Преимущества моторного масла 5W-20

Моторное масло 5W-20 всесезонное, рассчитанное на специфические требования моторов, спроектированных под энергосберегающие масла. За счет своей легкой прокачиваемости и низкой вязкости оно не только снижает механические потери на привод масляного насоса, но и обеспечивает нормальную работу двигателя, нуждающегося в маловязкой смазке.

Стремясь к предельному увеличению КПД, конструкторы таких моторов вынуждены среди прочего и снижать упругость поршневых колец. Именно трение между ними и стенками цилиндров создает немалую часть механических потерь. Но при снижении толщины и упругости колец неизбежно теряется и их эффективность, поэтому применение привычных масел наподобие 5W-40 в таких двигателях уже приводит к заметному росту расхода масла на угар. Легкотекучие масла 5W-20, в свою очередь, при рабочей температуре двигателя имеют минимальную кинематическую вязкость, гарантируя нормальную работу маслосъемных колец двигателя. Повышенное содержание модификаторов трения положительно влияет на механические потери во всех смазываемых узлах – от коренных вкладышей до постелей распредвалов.

Что означает маркировка 5W-20: характеристики

Один из основных показателей применимости моторного масла – это его вязкость, причем для всесезонных моторных масел важна как вязкость при рабочей температуре двигателя, так и при отрицательных температурах. Поэтому стандарт SAE J300 вводит ряд формальных требований, соответствующих набору классов вязкости, чтобы обеспечить удобство маркировки и сравнения смазочных материалов. Рост числового индекса вязкости означает увеличение ее при испытаниях, обязательных для указанного класса. В этой системе летнее масло SAE 40 гуще, чем SAE 30, а всесезонное SAE 5W-30 (при сопоставимых характеристиках зимой) при рабочей температуре двигателя гуще, чем SAE 5W-20.

Характеристики масла при условиях холодного пуска указывает класс низкотемпературной вязкости. Чтобы иметь возможность отличать летние масла от зимних, он обозначается с дополнительной буквой W. То есть моторное масло 5W-20 по своим пусковым характеристикам должно превосходить предельные требования класса 5W.

  • Во время испытаний на проворот коленчатого вала динамическая вязкость замеряется при температуре −30 °С и не должна превышать 6600 мПа·с. Это считается порогом, ниже которого среднестатистический двигатель не сможет быть уверенно провернут стартером. Соответственно, и масла с классом 5W рекомендованы для климата, когда температура не падает ниже указанной.
  • С разницей в 5 градусов (при температуре -35 °С) вязкость не должна превышать 60 000 мПа·с. Этот порог общий для всех классов SAE, меняется только температура при испытаниях. Проверка подтверждает способность масляного насоса прокачать систему смазки.

Результаты испытаний масла ROLF JP SAE 5W-20 ILSAC GF-5/API SN демонстрируют отличный запас по динамической вязкости относительно требований стандарта. Поэтому оно может уверенно использоваться в большинстве регионов России, за исключением наиболее холодных, где оптимальный выбор – это масла с низкотемпературной вязкостью класса SAE 0W.

При высокотемпературных испытаниях масло SAE 5W-20 должно укладываться в пределы:

  • по кинематической вязкости при 100 °С – от 5,6 до 9,3 мм 2 /с;
  • по динамической вязкости (HTHS) при 150 °С – не менее 2,6 мПа·с

Эти пределы наименьшие из всех, предусмотренных стандартом. Поэтому высокая стойкость к сдвигу, стабильность вязкости в течение интервала между заменами для масла 5W-20 наиболее важны. Одним из признаков качества масла, позволяющих рассчитывать на хороший срок службы, является близость замеренной кинематической вязкости к верхней границе стандарта, как это демонстрирует масло ROLF JP SAE 5W-20 ILSAC GF-5/API SN.

Евро-5 — что это значит и зачем смотреть на экологический класс?

Правительство РФ ввело 12 июля 2017 года ряд изменений в Правила дорожного движения. Согласно новым требованиям, на территории нашей страны были выделены новые зоны, в которые допускались автомобили только определенного класса. С тех пор водители и владельцы транспортных средств, при покупке автомобилей и автобусов, начали обращать пристальное внимание на такой параметр, как экологический класс двигателя.

Экологический класс автотранспорта и его значение

Экологический класс – это код, который указывает на количество и качество продуктов сгорания двигателя в выхлопных газах. Таблица стандартов, по которой определяют принадлежность транспортного средства к тому или иному классу, была утверждена в рамках Женевской конвенции о дорожном движении. В данный момент существует 7 экологических классов двигателей:

  1. Евро-0. Он был принят в большинстве стран ЕС в 1988 году. Допускал наличие в выхлопных газах углеводородов, оксидов азота и углеводорода, а также нерегламентированное количество твердых частиц. Считается чисто условным стандартом, поскольку его требованиям соответствовало большинство транспортных средств того времени.
  2. Евро-1. В ЕС этот стандарт был утвержден в 1992 году. Евро-1 регулировал содержание оксидов углеводорода, углеводородов и оксидов азота в выхлопных газах автомобилей, работающих на бензине и дизеле. Требования были недостаточно жесткими, поэтому уже спустя 3 года в ЕС было принято решение перейти на следующий экостандарт.
  3. Евро-2. Был введен на территории ЕС в 1995 году. Согласно требованиям стандарта количество вредных веществ должно было быть уменьшено более чем на 65%. На территории нашей страны Евро-3 был введен только в 2005 году.
  4. Евро-3. На территории ЕС стандарт был введен в 1999 году, а в России – в 2008 году. Допустимое количество вредных веществ в этой редакции было снижено на 40% по сравнению с Евро-2. Начиная с 2016 года, автомобили и городские автобусы Евро-3 не могут пересекать пределы третьего транспортного кольца в Москве.
  5. Евро-4. Один из самых распространенных стандартов отечественных транспортных средств. Евро-4 был принят в ЕС в 2005 году, а в России – на 8 лет позже. Объемы выбросов в этом стандарте были дополнительно понижены еще на 40% по сравнению с Евро-3.
  6. Евро-5. Актуальный стандарт, который в данный момент действует на территории стран Европы (с 2008 года) и России (с 2016 года). Углеводороды – не более 0,05 г/км, оксид углеводорода — до 0,8 г/км и оксид азота — до 0,06 г/км.
  7. Евро-6. Это первый экостандарт, который не применим к машинам на дизельном топливе. В России идет подготовка к переходу на Евро-6, но сроки реализации этих планов пока неизвестны.

Почему стандарт Евро-5 считается самым востребованным

Евро-5 появился в результате очередного ужесточения требований к выбросам выхлопных газов. Достичь требуемого уровня чистоты продуктов сгорания можно за счет применения двигателей, выполненных по новым стандартам, и очищенного топлива. Помимо безопасности окружающей среды, Евро-5 позволяет заметно снизить нагрузку на систему подачи топлива и другие системы автомобиля.

Высокий уровень очистки горючего позитивно сказывается на продолжительности работы комплектующих: форсунков, свечей и магистралей. Параллельно в камере сгорания сокращается количество нагара. Конструкция мотора также претерпевает изменений:

  1. Улучшенная калибровка калькулятора.
  2. Обновленная конструкция насоса для масла.
  3. Установлен насос с электромагнитной муфтой, предназначенный для охлаждения жидкости.
  4. Коленвал оборудован вкладышами с проточками для уменьшения расхода масла.
  5. Вакуумный насос работает практически бесшумно.

Как узнать экологический класс транспортного средства?

Информацию об экологическом классе транспортного средства можно узнать в ПТС. Обычно он указан в пункте 13 или особых отметках. Если же по каким-либо причинам информации нигде нет, то можно определить стандарт двигателя, воспользовавшись услугами испытательной лаборатории. Внести отметку в ПТС можно через ГИБДД.

Читать еще:  Электро схема двигателя 409

Существует также возможность повышения экостандарта транспортного средства с Евро-4 до Евро-5 за счет переоборудования части узлов, но подобная опция доступна далеко не во всех случаях. Перед поездкой в автосервис для модификации автомобиля необходимо получить разрешение в ГИБДД.

Несмотря на то, что на территории РФ экостандарты Евро-3 и Евро-4 еще не запрещены, компания Yutong уже давно перешла на производство транспортных средств нового уровня экологической безопасности. К примеру, новые автобусы туристического класса уже соответствуют стандарту Евро-5. Кроме того, компания разработала транспортные средства, отвечающие стандартам Евро-6. Клиенты Yutong могут приобрести современную автобусную технику с предельно высокими уровнями экологической безопасности.

В чем различие масел с обозначениями 5w30, 5w40, 5w50, и что означает 0 у масла 0w30?

В чем различие масел с обозначениями 5w30, 5w40, 5w50, и что означает 0 у масла 0w30?

Вязкость — важнейшее свойство масла. Ее изменение в зависимости от температуры определяет границы температурного диапазона применения масла. При низких температурах масло не должно иметь большую вязкость, чтобы обеспечить холодный пуск двигателя (проворачивание стартером) и прокачивание насосом по системе смазки. При высоких температурах масло не должно иметь очень малую вязкость, чтобы поддерживать необходимое давление в системе и надежно создавать смазывающую пленку между трущимися деталями.

По величине вязкости и ее изменению в зависимости от температуры масла разделяют на:

— зимние — благодаря небольшой вязкости обеспечивают холодный пуск при низких, но не обеспечивают надежного смазывания двигателя при высоких температурах;

— летние — не обеспечивают холодный пуск при температуре окружающего воздуха ниже 0°С, но благодаря большой вязкости надежно смазывают двигатель при высоких температурах;

— всесезонные — при низких температурах обладают вязкостью зимних, а при высоких — летних масел. Всесезонные масла вытесняют летние и зимние по двум причинам: нет необходимости заменять их при смене сезона и они более эффективны как нергосберегающие.

Кроме вязкости эксплуатационные характеристики масла определяются противоизносными моющими, антиокислительными и антикоррозионными свойствами.

Вязкостные характеристики, таким образом, являются первыми и самыми важными элементами классификации моторных масел. Любые добавки, в том числе и модификаторы, повышают его цену, поэтому всегда необходимо выбирать правильное отношение свойств масла и условий его эксплуатации.

Основой для подбора конкретной марки являются требования производителя Вашего автомобиля к применяемым маслам и жидкостям, приведенные в инструкции по эксплуатации. Обычно, помимо формальных требований (спецификаций) на используемые продукты, там также в качестве примера приводятся конкретные марки масел или ссылки на фирмы-производители смазочных материалов. Если же автомобиль уже далеко не новый и сведений, приведенных в инструкции по эксплуатации недостаточно (или они просто устарели), то Вы должны самостоятельно выбрать марку масла для двигателя или трансмиссии.

Что такое «SAE»?

Спецификация SAE (SAE – Society of Automobile Engineers) – Общество Автомобильных Инженеров) является международным стандартом, регламентирующем вязкость масел.

ЭТО НИ В КОЕМ СЛУЧАЕ НЕ МАРКА ПРОИЗВОДИТЕЛЯ МАСЕЛ.

Надо помнить, что ни о качественных характеристиках масел, ни их применении для конкретных марок автомобилей и типов двигателей спецификация SAE не говорит.

Прочтите, какие требования предъявляет спецификация SAE к моторным маслам:

Последняя редакция SAE J300 опубликована в декабре 1999 года. Требования этого стандарта :

Кинематическая вязкость . Характеризует принадлежность сезонных масел к тому или иному классу вязкости. Определяется при 100оС и невысоких скоростях сдвига (от 20 до 100 с-1).

Пусковые свойства . Характеризуют сопротивление при пуске холодного двигателя и возможность достижения пусковых оборотов. Определяются при отрицательных температурах от -10 до -35оС в зависимости от класса вязкости и высоких, порядка 105с-1, скоростях сдвига. Иными словами — в условиях, характерных для работы в подшипниках коленчатого вала при холодном пуске.

Прокачиваемость . Характеризует скорость поступления масла к парам трения при холодном пуске и вероятность выхода двигателя из строя из-за проворота вкладышей при холодном пуске. Определяется при отрицательных, от -15 до -40оС, температурах в зависимости от класса вязкости и низких, около 10 с-1, скоростях сдвига. Таким образом, при оценке этой характеристики реализуются условия течения масла в поддоне к маслоприемнику и в маслоприемнике насоса при пуске холодного двигателя.

Вязкость при высокой температуре . Отражает эффективную, реальную вязкость масла при летней эксплуатации современных высоконагруженных двигателей. Характеризует противоизносные свойства масел, потери на трение и влияние на экономичность двигателя. Определяется при 150оС и высоких, порядка 106 с-1, скоростях сдвига. Тем самым имитируются условия нагружения подшипников коленчатого вала при работе с высокими нагрузками и температурами.

Как видите, спецификация SAE – это характеристики масел по классам вязкости. На сегодняшний день она содержит 6 зимних классов и 5 летних классов масел. В обозначении зимних классов присутствует буква » W » от слова » Winter «, что означает » Зима «. Чем больше вязкость масла по этой спецификации, тем выше число, входящее в обозначение класса.

К зимним классам вязкости относятся: SAE 0W , 5W , 10W , 15W , 20W , 25W ;
К летним классам вязкости относятся: SAE 20 , 30 , 40 , 50 , 60 .

Для примера разберем, о чем говорит, например, обозначение SAE 10W-40 для моторных масел. Обозначение класса вязкости » 10W » дает нам информацию о зимнем применении данного масла. Иными словами, от правильного выбора этого параметра завистит насколько легко, а самое главное без негативных последствий, Вы сможете запустить двигатель на морозе.
Класс вязкости » 40 » в нашем примере является так называемым » летним » классом и говорит о том, насколько масло способно сохранять работоспособность в высокотемпературных зонах двигателя.

Присутствие же в обозначении сразу двух классов (как в нашем примере — SAE 10W-40) говорит о всезезонности данного масла.

Как выбрать класс вязкости по SAE?

При выборе класса вязкости моторного масла необходимо следовать инструкциям завода-изготовителя Вашего автомобиля. Если же она отсутствует или не содержит подобных рекомендаций (например, если автомобиль далеко не новый и рекомендации в инструкции или уже устарели или просто отсутствуют), вы должны помнить, что:

а) При выборе так называемого » зимнего » класса вязкости необходимо руководствоваться значениями средних зимних температур в регионе, где эксплуатируется Ваш автомобиль.

Следуя этим рекомендациям Вы и Ваш автомобиль будете застрахованы от проблем с запуском в зимнее время и от негативных последствий для двигателя (таких как повышенный износ и «заклинивание» во время и сразу после запуска, когда двигатель работает в режиме масляного «голодания»), которые возникают обычно при применении масел несоответствущего класса вязкости. Необходимо помнить, что при каждом запуске двигателя (не обязательно на сильном морозе, а даже при плюсовых температурах) требуется некоторое время для того, что бы масляный насос прокачал масло по системе смазки и оно поступило ко всем трущимся частям. В это время двигатель как раз и будет работать в режиме так называемого масляного «голодания», о котором мы уже упоминали выше. Понятно, что при этом резко возрастает трение и износ. Таким образом, чем более масло способно сохранять текучесть при низких температурах, тем быстрее оно будет прокачано по системе смазки и обеспечит защиту двигателя. Лучшими в этом отношении являются моторные масла класса » 0W » .

Читать еще:  Чтобы двигатель работал как часики

в) Что касается выбора так называемого » летнего » класса, то следует отметить, что большинство европейских производителей автомобилей рекомендуют использование масел класса » 40 » по SAE. Это связано с высокой тепловой напряженностью современных двигателей внутреннего сгорания и наличием высоких температур, удельных давлений и скоростей сдвига в различных зонах двигателя (поршневые кольца, распределительный вал, подшипники коленчатого вала и т.д.). В этих жестких условиях масло должно сохранять вязкость, достаточную для образования масляной пленки и охлаждения пар трения. Это задача становится особенно актуальной для предотвращения повышенного износа, задиров и «заклинивания» в жару или во время длительного нахождения в «пробке» (в условиях отсутствия обдува и охлаждения двигателя потоками встречного воздуха и, как следствие, перегрева масла в картере двигателя), а также в случае перегрева двигателя из-за возможных неисправностей в системе охлаждения.

Для всесезонных масел, обладающих свойствами как зимних, так летних сортов масла, спецификация SAE предусматривает двойное обозначение, например, 10W-40, где зимние вяскостно-температурные свойства отражены в левой части обозначения, а летние – в правой.

Вязкостно-температурные свойства — одна из важнейших характеристик моторного масла. От этих свойств зависит диапазон температуры окружающей среды, в котором данное масло обеспечивает пуск двигателя без предварительного подогрева, беспрепятственное прокачивание масла насосом по смазочной системе, надежное смазывание и охлаждение деталей двигателя при наибольших допустимых нагрузках и температуре окружающей среды. Даже в умеренных климатических условиях диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева в подшипниках коленчатого вала или в зоне поршневых колец составляет до 180—190 °С. Вязкость минеральных масел в интервале температур от -30 до +150 °С изменяется в тысячи раз. Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают пуск двигателя при температуре окружающей среды около 0 °С. Зимние масла, обеспечивающие хо¬лодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год. Это усложняет и удорожает эксплуатацию двигателей. Проблема решена созданием всесезонных масел, загущенные полимерными присадками (полиметакрилаты, сополимеры олефинов, полиизобутилены, гидрированные сополимеры стирола с диенами и др.).

Вязкостно-температурные свойства загущенных масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур — летним (рис. 2.3).

Рис. 2.3. Вязкостно-температурные характеристики на примере летнего (7 — SAE 40), зимнего (2 — SAE 10W) и
всесезонного (3 — SAE 10W-40) масел :
4 — максимальная вязкость при холодном пуске;
5 — минимальная необходимая высокотемпературная вязкость

Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, но значительно увеличивают ее при высокой температуpe, что обусловлено увеличением объема макрополимерных молекул с повышением температуры и рядом иных эффектов.
В отличие от сезонных, загущенные всесезонные масла изменя-ют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастет, а с увеличением снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: снижение вязкости в начале проворачивания холодного двигателя стартером облегчает пуск, а небольшое снижение вязкости масла в зазорах между поверхностями трения деталей прогретого двигателя уменьшает потери энергии на трение и дает экономию топлива.
Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, определяемая в капиллярных вискозиметрах, и динамическая вязкость, измеряемая при различных градиентах скорости сдвига в ротационных вискозиметрах, а также индекс вязкости — безразмерный показатель пологости вязкостно-температурной зависимости (см. рис. 2.3), рассчитываемый по

значениям кинематической вязкости масла, измеренной при 40 и 100 «С (ГОСТ 25371—82). В нормативной документации на зимние масла иногда нормируют кинематическую вязкость при низких температурах. Индекс вязкости минеральных масел без вязкостных присадок составляет 85-100. Он зависит от углеводородного состава и глубины очистки масляных фракций. Углубление очистки повышло индекс вязкости, но снижает выход рафинада.
Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.
К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действия силы тяжести, т.е. теряет текучесть. Она должна быть на 5-7 °С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов. Требуемая нормативной документацией температура застывания достигается депарафинизацией базовых компонентов и/или введением в состав моторного масла депрессорных присадок (полиметакрилаты, алкилнафталины и др.).

143981, Россия, Московская область, г. Балашиха, мкр. Кучино, ул. Речная владение 2

Справочник

Нагрев электродвигателей классы изоляции 10.07.2006 17:25

Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие — больше. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.

На табличке электродвигателя со всеми данными указан и параметр, называемый класс изоляции.

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции. По этому, нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально должен составлять 15—20 лет.

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.

При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени.

Предельные допустимые превышения температуры активных частей электродвигателей

t 0 (при температуре окружающей среды 40ºС):

  1. Класс E: допустимая температура нагрева до 120°C.
  2. Класс B: допустимая температура нагрева до 130°C.
  3. Класс F: допустимая температура нагрева до 155°C.
  4. Класс H: допустимая температура нагрева до 180°C.
Читать еще:  Что такое охладитель дизельного двигателя

Подробнее о классах нагревостойкости изоляции см Статью Класс нагревостойкости изоляции

В таблице приведены в качестве примера предельно допускаемые превышения температуры для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Температурой окружающего воздуха, при которой общепромышленный электродвигатель может работать с номинальной мощностью, считается 40ºС.

Если температура окружающей среды больше или меньше +40 для общепромышленного исполнения электродвигателя, то стандарт разрешает определенные изменения допустимых превышений температур.

При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается. У асинхронных двигателей на это может влиять изменение напряжения питающей сети, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя и кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов.

При повышении температуры многие из материалов начинают обугливаться и становятся проводниками. Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Опыт показывает, что повышение температуры изоляции на 10 °С сокращает срок ее службы примерно в два раза. Так, для изоляции класса А повышение температуры с 95 до 105 °С сокращает срок ее службы с 15 до 8 лет, а нагрев до 120 °С — до двух лет. В основе этого явления лежит общий закон зависимости скорости химических реакций от температуры, описываемый уравнением Ван-Гоффа-Аре-ниуса.

То есть технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается.

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В производственных условиях измерение температуры узлов электрических машин и электроаппаратуры выполняется непосредственно термометром или косвенно на основе измерения их сопротивления.

Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду. Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается. Рост температуры двигателя за­медляется.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада — медленно.

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток. Подробнее Статья Класс нагревостойкости изоляции смотреть

В отдельных точках частей машины температура может быть выше средней. Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые. Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65 ° — для изоляции класса А, 90 °С — для изоляции класса В, ПО и 135 °С — соответственно для изоляции классов F и Н.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С), но важно помнить прежде всего безопасность.

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40 °С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в таблице. При температурах больше 40 С и высоте более 1000 м эти значения должны быть уменьшены в соответствии с ГОСТ (Машины электрические вращающиеся. Общие технические требования). Непосредственные измерения температуры при помощи термометров или термощупов дают надежные результаты, но не позволяют определять температуру внутренних наиболее нагретых частей обмотки. На основе измерения омического сопротивления обмотки можно определить только некоторое среднее значение ее температуры. Поэтому нормы предельно допустимой температуры обмоток указываются с учетом метода ее измерения.

Ссылка на основную публикацию
Adblock
detector