Конструкция асинхронных двигателей
Конструкция асинхронных двигателей
В зависимости от способа выполнения обмотки ротора асинхронного двигателя последние разделяются на две большие группы: двигатели с короткозамкнутой обмоткой на роторе и двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами. Двигатели с короткозамкнутой обмоткой на роторе более дешевы в производстве, надежны в эксплуатации, имеют жесткую механическую характеристику, т. е. при изменении нагрузки от нуля до номинальной частота вращения машины уменьшается всего на 2-5%.
К недостаткам этих двигателей относятся трудность осуществления плавного регулирования частоты вращения в широких пределах, сравнительно небольшой пусковой момент, а также большие пусковые токи, в 5-7 раз превышающие номинальный. Указанными недостатками не обладают двигатели с контактными кольцами, однако конструкция ротора у них существенно сложнее, что ведет к удорожанию двигателя в целом. Поэтому их применяют в случае тяжелых условий пуска и при необходимости плавного регулирования частоты вращения в широком диапазоне.
Как указывалось, асинхронный электродвигатель имеет неподвижную часть — статор, на котором расположена обмотка, создающая вращающееся магнитное поле, и подвижную часть — ротор, в котором создается электромагнитный момент, приводящий во вращение сам ротор и исполнительный механизм. Сердечники статора и ротора набираются из изолированных листов электротехнической стали обычно толщиной 0,5 мм. Изоляция листов статора — лаковая пленка, ротора — окалина, образующаяся в процессе прокатки. Листы статора и ротора имеют пазы, в которых размещаются обмотки статора и ротора. Короткозамкнутая обмотка ротора обычно выполняется литой из алюминиевого сплава. В процессе заливки образуются как стержни (проводники) обмотки, расположенные в пазах, так и замыкающие их накоротко кольца, расположенные вне сердечника ротора. Кольца могут быть снабжены вентиляционными лопатками для улучшения вентиляции двигателя и теплоотвода от обмотки ротора. Отсутствие изоляции обмотки ротора обеспечивает хороший отвод тепла от обмотки к сердечнику.
Двигатели с короткозамкнутой обмоткой на роторе имеют ряд конструктивных исполнений по форме пазов на роторе. Форма пазов ротора выбирается в зависимости от требований к пусковым характеристикам двигателя. Наиболее рациональными для пазов ротора с одной клеткой являются трапецеидальные овальные пазы. Ротор называется глубокопазным, если высота паза ротора превышает глубину проникновения магнитного поля (для обмоток из алюминия двигателей промышленной частотой 50 Гц эта глубина равна 15 мм). В тех случаях, когда требуются большие значения пускового момента, применяется ротор с двойной клеткой, причем пазы в этом случае могут чередоваться. Пазы могут быть закрытыми или полузакрытыми. Короткозамыкающие кольца в случае литых двойных клеток выполняются общими для обеих клеток.
В ряде случаев обмотка двухклеточного двигателя выполняется из цветных металлов на основе меди. Тогда внешняя обмотка изготавливается из латуни или специальной бронзы, благодаря чему обеспечивается относительно большое ее активное сопротивление. Эта обмотка выполняет функции пусковой в асинхронном двигателе. Другая обмотка ротора — внутренняя — изготовляется из меди с минимальным активным сопротивлением. Она выполняет функции основной рабочей обмотки двигателя. Обе обмотки могут иметь круглые пазы, однако внутренняя обмотка в ряде случаев выполняется прямоугольной или овальной формы. Короткозамыкающие торцевые кольца для обеих обмоток обычно изготовляются из меди.
Общий вид асинхронного двигателя: подшипники — 1 и 11, вал — 2, подшипниковые щиты — 3 и 9, ротор — 5, статор — 6, вентилятор — 10, колпак — 12, ребра — 13, лапы — 14
Существуют другие модификации пазов ротора (бутылочного и трапецеидального профиля), однако описанные выше являются наиболее характерными для асинхронных двигателей. Асинхронные двигатели с фазным ротором обычно имеют полузакрытые пазы на роторе, в которые укладывается трехфазная обмотка с тем же числом полюсов, что и обмотка статора. Предварительно изолированные стержни этой обмотки заводят с торцевой стороны ротора. Фазы роторной обмотки обычно соединяют в звезду и подводят к трем контактным кольцам, расположенным на валу двигателя и изолированным друг от друга. В цепь обмотки фазного ротора с помощью контактных колец и соприкасающихся с ним щеток можно подключать добавочные сопротивления или вводить дополнительную ЭДС. Это используется при необходимости изменения рабочих или пусковых характеристик двигателей. Кроме того, с помощью контактных колец и щеток можно замыкать обмотку ротора накоротко.
Для уменьшения износа щеток в ряде конструкций ротора двигателей имеются специальные щеткоподъемные приспособления. С помощью этих устройств по окончании пуска двигателя контактные кольца замыкаются накоротко, а щетки приподнимаются и не участвуют в работе. Между ротором и статором асинхронного двигателя имеется воздушный зазор. При выборе воздушного зазора сталкиваются противоречивые тенденции. Минимальный (выбранный по механическим соображениям) воздушный зазор приводит к уменьшению тока холостого хода двигателя и увеличению коэффициента мощности. Однако при малом воздушном зазоре увеличиваются добавочные потери в поверхностном слое статора и ротора, добавочные моменты и шум двигателя. Вследствие роста потерь уменьшается КПД. Поэтому в современных сериях асинхронных двигателей воздушный зазор выбирается несколько большим, чем требуется по механическим соображениям (чтобы ротор при работе не задевал о статор).
Схемы соединения обмоток.
В асинхронных трехфазных двигателях используются два способа соединения фаз обмоток между собой: в звезду и треугольник. Эти соединения могут выполняться как внутри машины — глухое соединение, так и вне двигателя — с помощью сменных перемычек на специальном щитке, установленном на корпусе машины. В первом случае к выводному щитку подводятся три вывода, во втором — шесть выводов (начала и концы фаз). Внешнее соединение фаз наиболее удобно с точки зрения ее эксплуатации. В таком случае начала и концы фаз обмоток могут свободно отсоединяться при необходимости и подключаться к испытательной аппаратуре.
Питающее напряжение.
Асинхронные двигатели общего назначения обычно выпускаются для работы на двух напряжениях, например 127/220, 220/380 и 380/660 В. При меньшем из каждых двух напряжений фазы двигателя соединяются в треугольник, а при большем — в звезду. При внешнем соединении фаз двигателя сравнительно просто можно подключить его к одному из указанных на щитке напряжений. Некоторые электродвигатели выпускаются на одно напряжение, в этом случае фазы соединены в звезду.
Электротехнические материалы.
Для магнитопроводов (сердечников) статора и ротора асинхронных двигателей общего назначения широко применяются холоднокатаные низколегированные электротехнические стали. Они выпускаются в рулонах (лентах) нужной ширины, что позволило автоматизировать процесс штамповки листов и уменьшить отходы. Для двигателей серии 4А мощностью до 15-20 кВт применяется холоднокатаная сталь марки 2013 (нелегированная), а для машин большей мощности — сталь марки 2212 (слаболегированная). Для двигателей старых серий (А, А2) применялась горячекатаная сталь марки 1211. Применение холоднокатаных сталей позволило снизить расход стали на 10-15 и массу конструктивных деталей на 5-7% .
Изоляционные материалы применяются для изоляции токоведущих проводов, расположенных в одном пазу (друг от друга) — витковая изоляция, проводов разных фаз между собой — междуфазовая изоляция, проводов от заземленных сердечников — корпусная изоляция. Толщина изоляции определяется рабочим напряжением двигателя, классом нагревостойкости изоляции, условиями эксплуатации двигателя. В зависимости от предельно допускаемой температуры изоляционные материалы подразделяются на классы нагревостойкости. В свою очередь класс нагревостойкости изоляции (витковой, междуфазовой, корпусной) и пропиточных составов определяет допустимые превышения температуры для других частей двигателя в соответствии с ГОСТ 183-74.
В соответствии с ГОСТ 8865-70 изоляционные материалы разделены на семь классов нагревостойкости — У, А, Е, В, F, Н, С. Для изоляции асинхронных двигателей общего назначения обычно применяются четыре класса Е, В, F, Н с допустимыми температурами изоляционного материала 120, 130, 155, 180 °С соответственно. Обмоточные провода изготовляются с эмалевой, эмалево-волокнистой или волокнистой изоляцией. Толщина изоляционного слоя у проводов с эмалевой изоляцией в 1,5- 3 раза меньше, чем у проводов с волокнистой изоляцией; эмалевая изоляция, кроме того, лучше проводит тепло и является более влагостойкой. Поэтому в двигателях современных серий применяются в основном провода с эмалевой изоляцией марок ПЭТВ, ПЭТВМ (класс нагревостойкости В) и ПЭТВ, ПЭТ 155 (класс F). Провода ПЭТВМ и ПЭТМ разработаны для механизированной укладки обмоток. В двигателях напряжением 3 кВ и выше кроме указанных проводов применяются также провода со стекловолокнистой изоляцией марок ПСД и ПСДК. Диаметр изолированного провода при механизированной укладке всыпной обмотки не превышает 1,4-1,6 мм, при ручной укладке — до 1,8 мм.
Пазовая и междуфазовая изоляция.
В современных сериях двигателей широкое распространение получили композиционные материалы, представляющие собой сочетание полимерных пленок с различными гибкими электроизоляционными материалами на основе синтетических органических или неорганических волокон, причем указанные компоненты связаны между собой клеящими составами. Пленка принимает на себя основную электрическую и механическую нагрузки, в то время как другие компоненты выполняют функции армирующего материала, обеспечивающего необходимые технологические свойства композиции — жесткость, упругость, повышенную стойкость к механическим воздействиям и др.
Одной из важных функций волокнистых подложек является обеспечение надежной связи между поверхностями пазовой изоляции и прилегающими к ним катушками обмотки и сердечником за счет лучшей смачиваемости волокнистых материалов пропиточными составами по сравнению с пленками. Композиционные материалы обладают высокими механическими свойствами. Широко используются пленкосинтокартоны марок ПСК-Ф, ПСК-ЛП, состоящие из полиэтилентерефталатной пленки марки ПЭТФ, оклеенной с двух сторон бумагой из фенилонового или лавсанового волокна.
Для прокладок в лобовых частях применяют материалы с повышенным коэффициентом трения, такие, как пленкослюдопласт и пленкослюдокартон. Пропиточные и покровные составы. В двигателях современных серий широкое распространение нашли пропиточные составы без растворителей, что существенно уменьшило длительность процесса полимеризации, улучшило качество пропитки и теплопроводность изоляции. Для пропитки асинхронных двигателей современных серий применяются составы без растворителей марок КП-34, КП-50, КП-103. ЭКД-14, а также лаки с растворителями марок МЛ-92, ПЭ-933, КО-916К, КО-964Н. После пропитки и сушки на лобовую часть обмоток наносятся покровные составы для повышения стойкости обмотки к воздействию окружающей среды (пыль, масло, соляной туман, вредные примеси в воздухе и др.).
В качестве покровных составов применяют эмали ГФ92-ГС и ЭП91 (с растворителями) и компаунды КП-34, КП-50. Формы исполнения асинхронных двигателей определяются требованиями ГОСТ 2479-79 и разделяются на девять групп. Асинхронные двигатели серии 4А основного исполнения имеют четыре основные формы: IM 1081 — на лапах с двумя подшипниковыми щитами с одним цилиндрическим концом вала; IM 2081 — то же, что и IM 1081, но с фланцем на подшипниковом щите; IM 3081 — без лап с двумя подшипниковыми щитами, фланцем на подшипниковом щите и одним цилиндрическим концом вала со стороны привода; IM 9081 — встраиваемое исполнение с цилиндрической станиной (или без станины) с двумя подшипниковыми щитами и одним цилиндрическим концом вала со стороны привода. Как видно, условное обозначение двигателя по форме исполнения и способу монтажа состоит из латинских букв IM и четырехзначного числового индекса, первая цифра которого (от 1 до 9) определяет конструктивное исполнение, вторая и третья (от 00 до 99) — способ монтажа, четвертая (от 0 до 9) — условное обозначение конца вала. По степени защиты персонала от соприкосновения с токоведущим или движущимися частями, находящимися внутри машины, и попадания твердых посторонних тел и воды внутрь машины также существуют различные формы исполнения. В соответствии с ГОСТ 17494-72 для защиты электрических машин могут применяться 15 исполнений от IP00 до IP56. Для асинхронных двигателей напряжением до 1 кВ приняты две основные степени защиты IP23 и IP44.
Для некоторых специальных исполнений двигателей, работающих в пыльных и влажных помещениях, могут быть приняты степени защиты IP54, IP56. Двигатели, работающие в закрытых помещениях, могут иметь степень защиты IP22. Обозначение по способу защиты состоит из латинских букв IP и двух цифр, первая из которых (от О до 6) указывает на степень защиты персонала от соприкосновения и попадания посторонних предметов внутрь машины, а вторая (от 0 до 8) — на степень защиты от попадания воды:
исполнение IP22 — защита двигателя от проникновения внутрь корпуса твердых тел диаметром более 12 мм и от капель воды, летящих под углом не более 15° к вертикали;
исполнение IP44 — защита от твердых тел размером более 1 мм и от брызг, летящих в любом направлении;
исполнение IP23 — то же, что и IP22, но с защитой от дождя (капли дождя под углом до 60° к вертикали).
Способ охлаждения двигателей регламентируется требованиями ГОСТ 20459-75. Асинхронные двигатели общего назначения выпускаются с двумя способами охлаждения — с самовентиляцией (лопатки вентилятора расположены на роторе двигателя) типа IC01 и с наружным вентилятором, расположенным на валу двигателя, типа IC0141. Обозначение способа охлаждения состоит из латинских букв 1С, следующей за ними прописной буквы, обозначающей вид хладоагента (если охлаждение воздушное — эта буква опускается), и цифрового индекса, который указывает тип цепи для циркуляции хладоагента и способ его перемещения. В ряде модификаций двигателей применяются способы охлаждения IC0041 (естественное без вентилятора) и IC06 (охлаждение от пристроенного вентилятора, приводимого во вращение собственным двигателем).
Асинхронные двигатели Siemens
Асинхронные низковольтные двигатели производства Siemens – электрооборудование, представленное в широком ассортименте мощностей, – 0,06-1250 кВт. Изготавливается в корпусах из чугуна или прочных алюминиевых сплавов. Чугун используется для моделей средней и высокой мощности, сплавы на основе алюминия – для электродвигателей мощностью до 53 кВт. В производстве оборудования использованы инновационные технологии изготовления роторов, позволяющие существенно повысить КПД. Ассортимент включает типовые универсальные трехфазные двигатели и продукцию, предназначенную для конкретного применения и изготовленную на заказ.
Основные характеристики
Двигатели Siemens изготавливаются с различными системами охлаждения, среди которых:
- Самоохлаждающиеся модели с вентилятором, расположенным на валу. Питаются от сети, работают с постоянной скоростью.
- Охлаждаемые с помощью вентилятора, расположенного снаружи. Работают через преобразователь частоты.
- Безвентиляторная система, охлаждение происходит благодаря созданию естественной конвекции. Такие агрегаты востребованы в системах с высокими требованиями к уровню шума, надежности, при контакте с агрессивными средами.
- Охлаждаемые благодаря созданию водяной рубашки. Области применения аналогичны сферам использования агрегатов предыдущего типа.
Общие преимущества, свойственные всем моделям, независимо от мощности, конструктивного исполнения, функционального назначения:
- безопасность при функционировании привода;
- длительный эксплуатационный период;
- широкие возможности интеграции в различные системы.
Линейка асинхронных двигателей Siemens
Широкий ассортимент этого электрооборудования позволяет выбрать модель, наиболее подходящую для конкретной области применения. В линейке Siemens присутствуют:
- Стандартные общепромышленные с к.з. ротором. Степень защиты – IP55, по заказу – IP56, IP65. Предназначены для использования в комплексе с преобразователями частоты. Стандартные эксплуатационные условия – -20…+40°C, влажность – 60%. По заказу – -40…+60°C, влажность – 100%.
- Увеличенной мощности. Сочетают компактные габариты и высокую мощность. Изготавливаются в корпусах из чугуна или алюминиевых сплавов.
- Многоскоростные. Большинство моделей относится к складской позиции. Изготавливаются по классу F.
- Со стандартной изоляцией – до 500 В и со специальной изоляцией – до 690 В.
- Взрывозащищенные. Отличаются повышенной безопасностью. Могут иметь температурные классы T1-T3 и T1-T4. Работают от сети или преобразователей частоты.
- Морского исполнения. Соответствуют требованиям стандартов различных европейских государств.
- Рольганговые. Устанавливаются в реверсивных прокатных станах. Корпус изготавливается из чугуна с шаровидным графитом. Диапазон мощности – 2,5-66 кВт.
- Высокотемпературные. Применяются для установок удаления дыма. Диапазон мощности – 0,55-200 кВт.
- Морского исполнения. Изготавливаются в соответствии с национальными регистрами – французским, немецким, британским, норвежским.
- Изготовленные по заказу потребителя.
Модульная конструкция позволяет комплектовать двигатели интегрированными термисторами, энкодерами, системами принудительной вентиляции.
Основные серии стандартных электродвигателей
Компания ООО «Симэкс» предлагает серии асинхронных двигателей «Сименс» со следующими характеристиками:
- 1LE1. Обновленная линейка. Медный ротор, система самоохлаждения. Основные достоинства – энергоэффективность и высокий КПД. Интервал мощностей –0,75-22 кВт.
- 1LA5. Общепромышленный вариант. Система самоохлаждения, вентилятор расположен на валу. Имеют алюминиевый корпус, отличаются низким уровнем шума.
- 1LA7. Популярный вариант. Основные свойства: универсальность, способность решать большинство приводных задач. Могут работать с преобразователями частоты.
- 1LA6. Предназначен для решения приводных задач. Диапазон мощностей – 0,75-18,5.
- 1LA7/1PQ8. Низковольтный короткозамкнутый.
- 1LG4. Высокий КПД, широкий диапазон мощностей – 22-300 кВт. Отличаются максимальной взрывозащищенностью, улучшенной системой охлаждения. Могут использоваться дополнительные способы защиты.
- 1LG6. Низковольтный короткозамкнутый, чугунный корпус.
- 1MA6. Взрывозащищенное исполнение.
- Серводвигатели, двигатели плавного движения. Это установки, оптимально подходящие для совместного функционирования с приводной системой SINAMICSS120. Отличительные характеристики – простая диагностика, быстрый ввод в эксплуатацию, надежное бесперебойное функционирование.
Условия покупки и доставки
Компания ООО «Симэкс» предлагает широкий ассортимент асинхронных низковольтных двигателей производства Siemens, которые можно купить, сделав заказ по каталогу или обратившись к нашему менеджеру. Примерные цены на продукцию указаны на сайте.
Мы обеспечиваем:
- предпродажную проверку оборудования;
- обучение персонала на территории техцентра «Симэкс» или на площадях заказчика;
- возможность выбрать наиболее удобный способ оплаты;
- доставку товара на склад заказчика.
Асинхронный двигатель для пищевой промышленности (F)LS/(F)LSES IA
Стандартные асинхронные двигатели могут выпускаться в формате IA для использования в пищевой промышленности. Данные двигатели имеют дополнительное защитное покрытие препятствующее образованию коррозии и защищающее двигатель от воздействия агрессивных сред. В дополнении к защитному покрытию двигатели имеют усиленные уплотнительные прокладки, препятствующие утечкам масла из двигателя и выделениям пыли.
Номинальная мощность | 0,55…500кВт |
Номинальное напряжение | 230/400В |
Номинальная скорость вращения | 3000, 1500, 1000 и 750об/мин; 3000/1500, 1500/750, 1000/500 об/мин |
Типоразмер(высота оси вращения, мм) | 80…450 |
Класс энергоэффективности | IE1/IE2 |
Класс изоляции | Н(180°С) |
Cтепень защиты | IP55/IP65 |
Метод охлаждения | IC418 |
Монтажное исполнение | IM1001 ,IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201 |
Датчик скорости | — |
Дополнительные опции | Элекромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, изолированные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитные покрытия корпуса двигателя и др. |
Температуры окружающей среды и высота над уровнем моря | до +400°С и до 1000 м |
Цвет | RAL9006(серый) |
Техническая документация
- Emerson (F)LS/(F)LSES IA — документация
Стандартные асинхронные двигатели могут выпускаться в формате IA для использования в пищевой промышленности. Данные двигатели имеют дополнительное защитное покрытие препятствующее образованию коррозии и защищающее двигатель от воздействия агрессивных сред. В дополнении к защитному покрытию двигатели имеют усиленные уплотнительные прокладки, препятствующие утечкам масла из двигателя и выделениям пыли.
Номинальная мощность | 0,55…500кВт |
Номинальное напряжение | 230/400В |
Номинальная скорость вращения | 3000, 1500, 1000 и 750об/мин; 3000/1500, 1500/750, 1000/500 об/мин |
Типоразмер(высота оси вращения, мм) | 80…450 |
Класс энергоэффективности | IE1/IE2 |
Класс изоляции | Н(180°С) |
Cтепень защиты | IP55/IP65 |
Метод охлаждения | IC418 |
Монтажное исполнение | IM1001 ,IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201 |
Датчик скорости | — |
Дополнительные опции | Элекромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, изолированные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитные покрытия корпуса двигателя и др. |
Температуры окружающей среды и высота над уровнем моря | до +400°С и до 1000 м |
Цвет | RAL9006(серый) |
- Помощь в подборе оборудования и консультация по его применению
- Широчайший спектр электрооборудования и автоматики
- Гарантийное и послегарантийное обслуживание
- Гибкая ценовая политика и выгодные условия оплаты
Трехфазный асинхронный электродвигатель
Конструкция асинхронного электродвигателя
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор асинхронного двигателя
Ротор асинхронного двигателя
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Корпус и сердечник статора асинхронного электродвигателя
Конструкция шихтованного сердечника асинхронного двигателя
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Вращающееся магнитное поле асинхронного электродвигателя
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Магнитное поле создаваемое обмоткой
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Действие вращающегося магнитного поля на замкнутый виток
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2