Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Реверсирование — асинхронный двигатель

Реверсирование асинхронных двигателей производят путем изменения направления вращающегося магнитного поля статора, для чего меняют местами два любых линейных привода, питающих статор. При частом реверсировании двигателей пользуются трехполюсным переключателем. [1]

Реверсирование асинхронных двигателей достигается изменением порядка следования фаз на зажимах обмотки статора. При изменении положения переключателя меняется порядок следования фаз на зажимах двигателя ( А — В — С на Л — С — В), что приводит к изменению направления вращения магнитного поля, а следовательно, и к изменению направления вращения ротора. [3]

Реверсирование асинхронных двигателей достигается изменением порядка следования фаз на зажимах обмотки статора. В — С на Л — С — В), что приводит к изменению направления вращения магнитного поля, а следовательно, и к изменению направления вращения ротора. [5]

Для реверсирования асинхронного двигателя необходимо изменить чередование фаз, что вызовет изменение направления вращения магнитного поля статора. На рис. 18.13 представлены в относительных единицах рабочие характеристики асинхронного двигателя. [6]

Как производится реверсирование асинхронных двигателей . [7]

Как осуществляется реверсирование асинхронных двигателей . [8]

Реверсивный магнитный пускатель обеспечивает реверсирование асинхронного двигателя . [10]

Пуск, остановку, реверсирование асинхронных двигателей небольшой мощности с короткозамкну-тым ротором осуществляют обычно с помощью магнитных пускателей. [11]

Для изменения направления вращения, реверсирования асинхронного двигателя необходимо поменять местами два любых — линейных провода, соединяющих трехфазную сеть со статором машины. При таком переключении порядок чередования токов в фазах изменяется на обратный, что вызывает изменение направления вращения поля и направления вращения двигателя. Схема реверсирования двигателя представлена на рис. 12 — 28; положения / и 2 рубильника соответствуют различным порядкам чередования токов в фазах и, следовательно, противоположным направлениям вращения даига — теля. Включение двигателя в обратном направлении обычно производится после его предварительного 2 торможения и полной остановки. В противном случае при переключении имеет место пик тока, превосходящий пусковой ток и сопровождаемый толчком, действующим на приводимый в движение механизм. [12]

Для изменения направления вращения, реверсирования асинхронного двигателя необходимо изменить направление вращения его магнитного поля. Для этого требуется поменять местами два любых линейных привода, соединяющих трехфазную сеть со статором машины. При таком переключении порядок чередования токов в фазах изменяется на обратный, что вызывает изменение направления вращения поля ( § 7 — 6) и направления вращения двигателя. [13]

Для изменения направления вращения — реверсирования асинхронного двигателя — нужно лишь изменить соединения обмотки статора с сетью, так, чтобы зажим статора, соединенный первоначально, например, с фазой А сети, был присоединен к фазе В сети и соответственно было бы изменено соединение второго зажима статора с сетью. [15]

Реверс и торможение асинхронного двигателя с короткозамкнутым ротором

Асинхронный двигатель — машина реверсивная. Для изменения направления вращения ротора необходимо изменить направление вращения магнитного поля (переключением подводящих проводов на зажимах двух фаз двигателя) — Схемы пуска и торможения двигателя

Механические характеристики для двух направлений вращения представлены на рис. 1.

Рис. 1. Семейство механических характеристик асинхронного двигателя для реверсивной работы в тормозном режиме с отдачей энергии в сеть (I), режиме противовключения (II) и двигательном (III) 1, 2 — естественные; 3 — искусственная.

Асинхронный двигатель с короткозамкнутым ротором может использоваться не только в качестве двигателя, но и в качестве тормоза. В тормозном режиме любой электродвигатель всегда работает как генератор. У асинхронного электродвигателя с короткозамкнутым ротором при этом могут быть три тормозных режима.

В тормозном режиме с отдачей энергии в сеть машина работает с отрицательным скольжением. При этом скорость ротора превышает скорость вращения магнитного поля. Для перехода в этот режим, естественно, должен подводиться со стороны вала внешний активный момент.

Режим с отдачей энергии в сеть широко используется в подъемных установках. При спуске система привода за счет потенциальной энергии груза может приобрести скорость, превышающую скорость вращения магнитного поля, и спуск будет происходить в установившемся режиме, соответствующем некоторой точке g на механической характеристике, когда статический момент, создаваемый спускающимся грузом, уравновешивается тормозным моментом двигателя.

В обычных приводах с реактивным статическим моментом рассматриваемый режим реализуется только посредством специальных схем управления, позволяющих снизить скорость вращения магнитного поля. Механические характеристики асинхронной машины для режима с отдачей энергии в сеть представлены на том же рис. 1.

Читать еще:  Bmw f30 какой двигатель брать

Как было показано, максимальный момент в генераторном режиме несколько выше, чем в двигательном, а критическое скольжение по абсолютному значению такое же.

Асинхронные генераторы как таковые имеют очень узкую область применения, а именно ветроэлектрические станции. Так как сила ветра непостоянна и соответственно скорость вращения агрегата существенно изменяется, то в этих условиях асинхронный генератор является предпочтительным.

Наибольшее применение имеет тормозной режим — противовключение. Переход в этот режим асинхронных двигателей, так же как двигателей постоянного тока, возможен в двух случаях (рис. 1): при существенном увеличении статического момента (участок характериcтики аb) или при переключении обмотки статора для другого направления вращения (участок cd).

В обоих случаях двигатель работает при скольжении, большем 1, а токи при этом превышают пусковые. Поэтому для короткозамкнутого двигателя этот режим можно использовать только с целью быстрой остановки привода.

При достижении нулевой скорости двигатель должен быть отключен от сети, так как в противном случае он будет стремиться разогнаться в противоположном направлении.

При торможении противовключением двигателей с фазным ротором в цепь ротора следует вводить сопротивление реостата для ограничения тока и повышения тормозного момента.

Возможен также режим динамического торможения. Однако при этом возникают некоторые сложности. При отключении двигателя от сети одновременно исчезает и магнитное поле машины. Возможно возбуждение асинхронной машины от источника постоянного тока, который подключается к статору, отключенному от сети переменного тока. Источник должен обеспечить ток в обмотке статора, близкий к номинальному. Так как этот ток ограничивается только электрическим сопротивлением обмотки, то напряжение источника постоянного тока должно быть невелико (обычно 10 — 12 В).

Рис. 2. Подключение статора асинхронного двигателя к источнику постоянного тока в режиме динамического торможения при соединении треугольником (а) и звездой (б)

Для динамического торможения используется также режим самовозбуждения. К статору, отключенному от сети, подключаются конденсаторы.

Рис. 3. Схема динамического торможения асинхронного двигателя с самовозбуждением

При вращении ротора создается ЭДС в цепи статора за счет остаточного намагничивания и по обмоткам статора, а также через конденсаторы протекает ток. При достижении некоторой скорости в цепи статора возникают условия резонанса: сумма индуктивных сопротивлений будет равна емкостному сопротивлению. Начнется интенсивный процесс самовозбуждения машины, который приведет к росту ЭДС. Режим самовозбуждения за­вершится при равенстве ЭДС машины Е и падения напряжения в конденсаторах.

Максимум тормозного момента при увеличении емкости смещается в сторону более низких скоростей. Недостатки рассматриваемого тормозного режима — возникновение тормозного действия только внутри некоторой зоны скоростей и необходимость использования конденсаторов большой емкости для торможения при малых скоростях.

Положительная сторона — не требуется дополнительный источник электрической энергии. Этот режим всегда имеет место в таких установках, где для улучшения коэффициента мощности питающей сети к двигателю подключается батарея конденсаторов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

§2.5. Пуск, реверсирование и торможение асинхронных двигателей

Пуск.
Условием пуска двигателя является неравенство Мпст ; если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. При пуске ( ω2= 0, S= 1) ток в роторе достигает наибольшего значения (см. (2.15)). Соответственно велики пусковые токи и в обмотке статора, электродинамические усилия, действующие на обмотку, токовые перегрузки в питающей сети.
У асинхронных двигателей малой мощности и специальных двигателей с повышенным критическим скольжением обычно кратность пускового тока Кiп ≤ 6 и допускается непосредственное включение двигателя в сеть. Если Кiп > 6 или требуется более сильно ограничить пусковой ток, то приходится применять специальные способы пуска. У двигателей с короткозамкнутым ротором это в основном способы пуска при пониженном напряжении питания. По мере разгона ротора токи в обмотках уменьшаются и напряжение может быть повышено до номинального значения. Недостатком способов пуска при пониженном напряжении является то, что пропорционально квадрату фазного напряжения уменьшается пусковой момент (см. (2.22)).
У двигателей с рабочей схемой соединения обмоток статора в “треугольник” возможен пуск переключением со “звезды” на “треугольник”. Пуск происходит при соединении обмоток статора в “звезду”. Фазные напряжения и токи в раз, а линейный ток в √3 раза меньше, чем при прямом пуске на схеме “треугольник”. После разгона обмотки статора переключают на рабочую схему “треугольник”. Однако, как уже отмечалось, уменьшается и пусковой момент – в 3 раза.
У двигателей с контактными кольцами чаще применяется р е о с т а т н ы й способ пуска, основанный на изменении добавочного активного сопротивления – пускового реостата R, включаемого в цепь ротора (рис. 2.13,a).

Читать еще:  Opel zafira какой выбрать двигатель


Рис.2.13

Включение в цепь ротора активного сопротивления уменьшает ток в роторе и одновременно, как показано на рис. 2.13,б, увеличивает пусковой момент: при RПD&gtRПС>RПB>RПА пусковой момент МпDпCпBпA. Пуск осуществляют путем постепенного, обычно ступенчатого, уменьшения сопротивления Rп (жирные линии на рис. 2.13, б). Максимальное значение сопротивления Rп и его ступени ( RпA, RпB, RпC, RпD ) выбирают так, чтобы пики тока не превышали допустимых и пусковой момент Мп был больше момента сопротивления Мст. Однако эти двигатели более сложные и дорогие и их целесообразно применять только при тяжелых условиях пуска, когда необходим максимальный пусковой момент и мала мощность питающей сети.
Более современным способом пуска двигателя с контактными кольцами, основанным на изменении добавочного активного сопротивления в цепи ротора, является и м п у л ь с н ы й способ (рис. 2.14,а).


Рис.2.14

Пусковое сопротивление Rп подсоединяют последовательно к обмотке ротора через неуправляемый выпрямитель В. Периодическое подключение Rп производится силовым тиристором Т. Если тиристор Т включен, его сопротивление практически равно нулю, т.е. Rп шунтируется. Если тиристор Т отключен, его сопротивление существенно больше сопротивления Rп и можно считать, что цепь ротора по тиристору разомкнута, а замкнута через сопротивление Rп. Это можно представить как подключение к цепи ротора некоторого пускового сопротивления, среднее значение которого изменяется при изменении относительной продолжительности ε включения тиристора: Rп.cp = Rп (1- ε ) (рис.2.14.б), где ε =tи /Tи.
Относительная продолжительность может изменяться от I до 0, соответственно, Rп.cp — от 0 до Rп. Семейство механических характеристик при различной скважности будет иметь такой же вид, что и при обычном реостатном пуске (см. рис. 2.13,6), причем характеристике RпА=0 соответствует ε =1, характеристике RпD=Rп соответствует ε =0.
Преимущества рассмотренного импульсного способа по сравнению с обычным реостатным заключается прежде всего в том, что пуск может быть плавным и что способ удобен для реализации автоматического пуска.

Реверсирование двигателя.
Изменение направления вращения ротора осуществляется изменением направления вращения поля статора. Для этого достаточно поменять местами выводы двух любых фаз.

Торможение двигателя.
Для быстрой остановки двигателя могут применяться различные способы электрического торможения: рекуперативное, торможение противовключением и динамическое торможение.
Рекуперативное торможение происходит при работе асинхронной машины в режиме генератора параллельно с сетью, т.е. при ω21 (см. рис. 2.9,б). На практике этот режим встречается в основном при переходе с высших угловыхскоростей на низшие, например, при изменении числа пар полюсов или частоты напряжения питания.
Торможение противовключением происходит в том случае, когда магнитное поле статора вращается в одном направлении, а ротор в противоположном. При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки. Основным способом перевода работающего двигателя в этот режим является переключение любых двух фаз статора. При этом изменяется направление вращения магнитного поля и двигатель переходит из точки А (рис.2.15,а; характеристика 1) в точку В (характеристика 2).


Рис.2.15

Электромагнитный момент Мэм изменяет знак, т.е. становится тормозным, и угловая скорость ротора, продолжающего по инерции вращаться в прежнем направлении, быстро уменьшается. Если в точке С двигатель отключить от сети, ротор остановится. В противном случае произойдет реверсирование двигателя — ротор начнет вращаться в противоположном направлении и перейдет в установившийся режим в точке D.
Реверсирование или торможение противовключением асинхронных двигателей с контактными кольцами средней и большой мощности осуществляется с одновременным подключением к цепи ротора дополнительного активного сопротивления с целью ограничения чрезмерно больших токов.
Динамическое торможение осуществляется отключением обмотки статора от сети переменного тока и подключением к сети постоянного тока (рис.2.15, б; ключ К1 – разомкнут, К2 – замкнут). Возникает неподвижное поле статора, которое наводит ЭДС и токи во вращающемся роторе. В результате взаимодействия этих токов с полем статора создается тормозной момент. Механические характеристики в режиме динамического торможения расположены во II квадранте (кривые 2 и 3 на рис.2.15, в) и похожи на механическую характеристику в режиме двигателя (кривая I). В отличие от режима двигателя максимальный момент наступает при тем большей угловой скорости ротора чем больше активное сопротивление ротора. В момент переключения питания двигатель переходит из точки А характеристики I в точку B характеристики 2, электромагнитный момент меняет знак и начинается интенсивное динамическое торможение, заканчивающееся в точке 0.
У двигателей с контактными кольцами в момент переключения в цепь ротора включается добавочное активное сопротивление Rд для повышения начального тормозного момента (переход в точку С ) и снижения токов.

Читать еще:  Двигатели тутаевский и его характеристика

Реверсирование асинхронного двигателя.

Рисунок. Переключение обмотки статора при реверсировании.

Реверсирование асин­хронных двигателей достигается изменением поряд-

ка следования фаз на зажимах обмотки статора. На рисунке представлена схема реверсирования двигателя переключателем П. При изменении поло­жения пере-

ключателя меняется порядок следования фаз на зажи­мах двигателя (А – В- С на А- С — В), что приводит к изме­нению направления вращения магнитного поля, а следовательно, и к изменению направления вращения ротора.

Устройство и принцип действия двигателя постоянного тока.

Основные части машины постоянного тока. Листы из которых набирают магнитную цепь ротора: а – с открытыми пазами,

б – с полузакрытыми пазами.

Состоит из ротора, статора. Сердечник набирается из листов стали и на него наматывается обмотка – обмотка возбуждения на которую подается напряжение. Якорь или ротор представляет из себя цилиндр, набранный из листовой стали. Концы обмоток выводятся на коллектор, расположенный на валу двигателя. Коллектор контактирует с щетками, через которое подается напряжение на обмотку якоря.

По виду возбуждения двигатели постоянного тока делятся на 2 группы:

1 группа – двигатели с независимым возбуждением, когда на обмотки якоря и на обмотки возбуждения подается напряжение от различных источников:

2 группа – двигатели с самовозбуждением, которые подразделяются:

а) Двигатель с параллельным возбуждением:

б) Двигатель с последовательным возбуждением:

в) Двигатель со смешанным возбуждением:

Двигатели постоянного тока с параллельным возбуждением.

Машина постоянного тока может также работать в качестве двигателя, т. е. преобразовывать электрическую энергию в меха­ническую.

Если к зажимам неподвижной машины постоянного тока с па­раллельным возбуждением (рис.) подвести извне постоянное напряжение U, то в обмотке якоря начнет протекать ток 1я, а в об­мотке возбуждения — ток Iв. Благодаря коллектору токи в стерж­нях якорной обмотки, расположенных под северным полюсом, будут направлены в одну сторону, а в стержнях, находящихся под южным полюсом, — в противоположную сторону.

В результате взаимодействия токов, протекающих в стержнях якоря, с магнитным потоком Фв обмотки возбуждения на стержни будут действовать электромагнитные силы F, направление которых определяется по правилу левой руки. Эти силы создают электро­магнитный вращающий момент

под действием которого якорь машины начнет вращаться. Электро­магнитный момент М будет преодолевать момент сопротивления Мс, приложенный к валу, — электрическая машина начнет работать в режиме двигателя.

При вращении якоря стержни пересекают магнитные линии, поэтому в обмотке якоря индуктируется э. д. с. Е == спФ.

Пользуясь правилом правой руки, нетрудно убедиться, что э. д. с., индуктируемая в каждом стержне, направлена против про­текающего в нем тока. Э. д. с. Е якорной обмотки двигателя оказы­вается направленной против, внешнего напряжения U. Поэтому эта э. д. с. получила название противоэлектродвижущей силы.

Создание вращающего момента двигателя постоянного тока.

Учитывая противоположные направления U и Е, можно написать следующее выражение для тока в цепи двигателя:

Формулу можно представить в виде : U=E+Iя rя,

Напряжение U, приложенное к зажимам двигателя, уравнове­шивает противо-э.д.с. и компенсирует падение напряжения в со­противлении rя обмотки якоря. В отличие от генератора э.д.с. Е двигателя меньше напряжения U на его зажимах. При нормальной работе двигателя величина Iя rя сравнительно мала и противо-э.д.с. Е составляет примерно 90—95% от напряжения U.

У двигателя с параллельным возбуждением общий ток I, по­требляемый из сети, равен сумме токов, протекающих в обмотке якоря и в обмотке возбуждения (рисунок по теме):

У двигателя с параллельным возбуждением ток Iв составляет 2—5% от номинального тока двигателя Iн.

Ссылка на основную публикацию
Adblock
detector