Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Синхронные двигатели

Синхронные двигатели. Конструкция, принцип действия

В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянна при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компресоры, вентиляторы).
В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.
Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. 1а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 1б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.

Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материала и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора.
Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол θ относительно оси магнитного поля статора.
С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма.
У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.
В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка.
Вращающее магнитное поле статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем статора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигатель втягивается в синхронизм и вращается с синхронной скоростью. Короткозамкнутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.

Синхронная машина

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Содержание

  • 1 Устройство
  • 2 Принцип действия
    • 2.1 Двигательный режим
    • 2.2 Генераторный режим
  • 3 Разновидности синхронных машин
    • 3.1 Бесконтактная синхронная машина
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки

Устройство [ править ]

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор — таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой не получается с помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока [1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из электротехнической стали. Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

Принцип действия [ править ]

Как всякая электромашина, синхронная машина может работать в режимах двигателя и генератора.

Читать еще:  Двигатель n52b25af сколько масла

Двигательный режим [ править ]

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щётка-кольцо), в маломощных, к примеру, в двигателях жёстких дисков — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей «раскачивание» ротора при синхронизации. После выхода на скорость, близкую к номинальной (>95% — так называемая подсинхронная скорость), индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель либо частотно-регулируемый пуск, также частотное регулирование применяют на всех типах СД в рабочем режиме — например, на тяговых двигателях скоростного электропоезда TGV. Двигатели старых электропроигрывателей требовали ручного пуска — прокрутки пластинки рукой, позже в проигрывателях стали применяться асинхронные двигатели.

Иногда на валу крупных машин ставят небольшой генератор (постоянного тока или переменного тока с выпрямлением), т.н. «возбудитель», который питает электромагниты.

Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети [Гц] соотношением:

,

где — число пар полюсов статора, в зависимости от нагрузки машины меняется лишь угол нагрузки (угол тета) — электрический угол отставания или опережения поля возбуждения по отношению к полю якоря. При угле нагрузки более 90 электрических градусов машина выпадает из синхронизма — останавливается, если вал перегружен тормозным моментом, либо уходит на повышенные обороты, если машина работает в режиме генератора и недогружена электрической нагрузкой.

Синхронные двигатели при изменении возбуждения меняют косинус фи с ёмкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт (воздуходувки, водоперекачивающие и нефтеперекачивающие насосы), к примеру, типа СТД, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

Генераторный режим [ править ]

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора [об/мин] соотношением:

,

где — число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.

Разновидности синхронных машин [ править ]

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин).

Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора — 6000 (редко), 3000, 1500 об/мин.

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.

Читать еще:  Что такое двигатель биг блок

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы.

Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

Бесконтактная синхронная машина [ править ]

В классической синхронной машине имеется слабое место — контактные кольца со щётками, изнашивающиеся быстрее других частей машины из-за электроэрозии и простого механического истирания. Кроме того, искрение щёток может стать причиной взрыва. Поэтому сначала в авиации, а позже и в других областях (в частности, на автономных дизель-генераторах) получили распространение бесконтактные трёхмашинные синхронные генераторы. В корпусе такого агрегата размещены три машины — подвозбудитель, возбудитель и генератор, их роторы вращаются на общем валу. Подвозбудитель — синхронный генератор с возбуждением от вращающихся на роторе постоянных магнитов, его напряжение подаётся в блок управления генератором, где выпрямляется, регулируется и подаётся в обмотку статора возбудителя. Поле статора наводит в обмотке возбудителя ток, выпрямляемый размещённым на валу блоком вращающихся выпрямителей (БВВ) и идущий в обмотку возбуждения генератора. Генератор уже вырабатывает ток, идущий к потребителям.

Такая схема обеспечивает как отсутствие иных механических частей в двигателе, кроме подшипников, так и автономность работы генератора — всё время, пока генератор вращается, подвозбудитель даёт напряжение, которое может быть использовано для питания цепей управления генератором.

Принцип работы синхронного двигателя

Каков принцип работы синхронного двигателя? Что вам необходимо знать о нем? Как правильно использовать, чтобы ремонт электродвигателя понадобился как можно позже? Эту статью мы составили специально для наших клиентов (как существующих, так и будущих).

Каково строение синхронного двигателя? Какие основные свойства вам необходимо знать и иметь в виду?

  • Оборудование не является самозапускающимся механизмом. Это значит, что для его работы требуется внешнее вмешательство/воздействие. В противном случае система не сможет начать работу на определенной синхронной скорости.
  • Системы могут применяться для увеличения фактора силы. Благодаря уникальному строению и функциональным решениям синхронный двигатель может работать в условиях любых коэффициентов мощности.
  • Двигатель имеет синхронный с частотой электрической сети принцип работы. Это значит, что на вашем объекте обязательно нужно подумать о наличии бесперебойного источника питания, который позволил бы двигателю работать с постоянной заданной скоростью.

Ключевые характеристики синхронных двигателей

Электромеханическое устройство, способное преобразовать электрическую энергию в механическую — ключевая характеристика. Строение синхронного двигателя мало чем отличается от того же 3-фазного асинхронного двигателя. Основным исключением является разве что принцип подачи постоянного тока (он идет на ротор).

В зависимости от типа подключения можно выделить оборудование 2-х видов:

  • Однофазное
  • Трехфазное.

Все трехфазные решения дополнительно разделяются на несколько подтипов. К примеру, на рынке представлены синхронные или асинхронные (также можно встретить и другое название – индукционные) решения.

Принцип работы синхронного двигателя

Чтобы вам проще было понять основные направления, мы представим информацию в кратком и схематичном виде. Если у вас появляются вопросы, то смело можете связаться с нашим специалистом. Опытный мастер расскажет о принципе действия, даст ответы на ваши вопросы, разъяснит те моменты, которые показались вам сложными и непонятными.

Мы работаем для того, чтобы вам было удобно!

  1. Требуется создание электронно-магнитного поля.
  2. Для этого в оборудовании используется 2 электрических ввода (обмотка и ротор).
  3. Обмотка статора включает 3 фазы, которые отвечают за процесс вращения магнитного потока.
  4. На ротор подается постоянный ток, здесь же и производится постоянный поток.

ВАЖНО ЗНАТЬ! Механика проста и понятна: если частота составляет 50 Гц, то в таком случае трехфазному потоку необходимо будет вращаться 3 тысячи оборотов на 60 секунд. Путем простых вычислений становится понятно, что для работы системы нужно 50 оборотов за 1 секунду. Принцип работы синхронного двигателя предусматривает возникновение явления так называемой инерции силы. Чтобы преодолеть ее, требуется сильное механическое воздействие.

Запускаем синхронный двигатель в работу

Оборудование не является самозапускающимся механизмом, о чем мы уже и указывали выше. Для удобства клиентов и заказчиков могут предусматриваться разные способы запуска:

  • С помощью вспомогательного двигателя. В таком случае требуется надежное и прочное соединение; как только магнитное поле замыкается, то связь с «запускающим» двигателем прекращается.
  • Через асинхронный пуск. Принцип работы синхронного двигателя предусматривает использование дополнительной короткозамкнутой обмотки.

Надеемся, вам стало более понятно и ясно, в каком направлении работать дальше, каких требований и критериев придерживаться.

Читать еще:  Что такое объем двигателя газонокосилки

Электрические машины

При разработке электрических машин хорошим помощником инженера являются современные инструменты моделирования, такие как ANSYS, которые широко используются для быстрого и точного прогнозирования характеристик будущих устройств. Численные методы, заложенные в основу вычислительных модулей, а именно метод конечных элементов, позволяют решать задачу по достижению наибольшей эффективности электрических машин, используя минимальное количество дорогостоящих материалов.

Наилучшие результаты можно получить при использовании ANSYS на ранней стадии процесса проектирования, когда на достижение оптимальной конструкции машин влияет весь рабочий процесс всестороннего междисциплинарного анализа.

Зачастую ошибки, накопленные в процессе разработки, приводят к тому, что параметры машины выходят за пределы заданного рабочего диапазона. В итоге появляется необходимость дорогостоящего перепроектирования в конце цикла разработки. Применяя решения ANSYS вы получаете многофункциональную виртуальную лабораторию для проектирования, разработки, оптимизации и тестирования электрических машин.

Типичные задачи и типы электрических машин.

Синхронная машина с постоянными магнитами (IPM motor): Анализ карты эффективности

Высокоэффективный синхронный двигатель с инкорпорированными постоянными магнитами (IMP) имеет широкий рабочий диапазон. В нём используются спечённые редкоземельные постоянные магниты с высокими энергетическими характеристиками. Вращающий момент формируется из реактивного момента, вызванный разностью индуктивностей по d- и q-осям, и магнитного момента, обусловленного взаимодействием магнитных потоков обмотки статора и постоянных магнитов ротора.

Эффективность электрической машины сильно зависит от скорости вращения и нагрузки на валу, поэтому при разработке двигателей и систем управления необходима карта эффективности в диапазоне регулирования. Карта подготавливается таким образом, чтобы она была максимально информативна и понятна с первого взгляда, зачастую используется в индексе производительности данных каталогов. Двигатель IPM нуждается в расширенном анализе для понимания его состояния при изменении типа регулирования (контроль контроль максимального вращающего момента, управление ослаблением поля и т.д.) в зависимости от скорости вращения, нагрузки.

Вспомогательный инструмент Electric Machine Design Toolkit для анализа электрических машин с постоянными магнитами в среде ANSYS Maxwell позволяет проводить необходимые вычисления в автоматическом режиме для построения карты эффективности и характеристики вращающего момента (torque – speed curve), обеспечивает значительное ускорение во времени разработки, благодаря возможности графического отображения карт эффективности. Кроме того, этот инструмент совместим с распределенными вычислениями на сборках кластерного типа (* необязательно) и может выполнять высокоскоростной расчет тысяч расчётных случаев с высокой масштабируемостью от вычисления карты эффективности до вывода графиков.

Построение характеристик для двигательного и генераторного режима

Отображение карт различных характеристик и электромагнитных потерь

Efficiency Map Displayer

  • Различные функции отображения
  • Изменение шкалы
  • Изменение цветового тона и градации
  • Отображение сетки
  • Функция расстановки меток
  • Копирование в буфер обмена
  • Сохранение файла изображения

Синхронная машина с постоянными магнитами (IPM motor): Системный уровень моделирования

Высокоэффективный синхронный двигатель с инкорпорированными постоянными магнитами (IMP) имеет широкий рабочий диапазон. В нём используются спечённые редкоземельные постоянные магниты с высокими энергетическими характеристиками. Вращающий момент формируется из реактивного момента, вызванный разностью индуктивностей по d- и q-осям, и магнитного момента, обусловленного взаимодействием магнитных потоков обмотки статора и постоянных магнитов ротора.
Традиционно, большая часть конструкции системы управления и оборудования мотора находятся в процессе самостоятельной разработки компонентов, отсюда и одна из технических проблем, которая заключается в том, что сложно согласовать проект, направленный на оптимизацию всей системы.

Однако эта задача может быть решена путем совместного использования инструментов для анализа электромагнитного поля ANSYS Maxwell и схем управления в симуляторе системного уровня ANSYS Simplorer. Существуют два основных метода, которые объединяют анализ электромагнитного поля и схему управления симулятора: ко-симуляция, метод прямого совместного решения нестационарной задачи (симулятор – конечноэлементная модель) и моделирование на основании эквивалентной модели (поведенческая модель), которая создаётся через анализ электромагнитного поля и присутствует в схеме управления, как один из её элементов. Таким образом с помощью ANSYS Maxwell и ANSYS Simplorer можно выполнить моделирование системного уровня с помощью любой техники в ответ на потребность пользователя.

С помощью любой из этих техник возможно выполнить сопряженное моделирование управления, которое учитывает пространственную гармонику и характеристики магнитного насыщения двигателя. При решении задачи методом ко-симуляции возможно принимать во внимание электромагниные потери, вычисленные с высокой точностью, в то время как моделирование на основе моделей пониженного порядка ROM (эквивалентных моделей) имеет особенность высокоскоростного моделирования системного уровня, управления.

ANSYS Maxwell и ANSYS Simplorer – продукты одной компании, которые имеют свои сильные стороны, включая систему поддержки и совместимость инструментов для сопряженного анализа, по сравнению с инструментами, объединяющими решения, созданные разными компаниями.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]