Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Скважность импульсов

Скважность импульсов

Общеизвестно, что регулировать количество оборотов электродвигателя можно периодическим включением и отключением его от энергосети, кроме того при изменении времени включения и отключения можно задавать дополнительные параметры скорости. Это явление характерно не только для электродвигателя – его действие можно заметить во всех потребителях тока, способных запасать энергию, иначе говоря, инерционных системах.

Принцип широтно-импульсной модуляции основан именно на этом эффекте, он нашёл себе достаточно широкое применение при управлении электротехническими устройствами и источниками освещения, где требуется циклическая подача энергии. В английском языке этот принцип получил название – Pulse-Width Modulation.

Что такое ШИМ

Что такое электрический импульс? Это резкий конечный всплеск напряжения в системе. Поскольку он конечен, то он имеет начало, обычно называемое фронтом, ширину и спад, его окончание, период.

Такие всплески можно охарактеризовать следующими параметрами:

  • периодичность – это временной период до фронта следующего импульса, обозначается литерой T;
  • скважность – отношение периода к ширине, это величина безразмерная и выражается чаще всего в процентах, на схеме можно обозначить участок между спадом первого импульса и фронтом нового, обозначается литерой S;
  • частота сигнала – количество всплесков за определённый промежуток времени, величина, обратная периоду колебаний;
  • ширина импульса – период времени, в течение которого его амплитуда стабильна;
  • коэффициент заполнения – значение, обратное скважности, обычно обозначается в формулах литерой t.

Таким образом, скважность импульса – это соотношение:

Благодаря этому, широтно-импульсная модуляция позволяет управляемо изменять напряжение в системе от нулевого значения до максимальной амплитуды сигнала, это используется для установки оптимальных режимов работы инерциальных систем.

Применение

Для формирования прямоугольных колебаний применяется микросхема аналогового типа или чип-контроллер. Сами колебания управляют только нагрузкой, идущей от источника тока. Подключение производится через ключевую схему на полупроводнике. Ключ имеет всего два состояния: либо он включён в сеть, либо размыкает её.

Грубо говоря, все зависит от характеристик колебаний. Так, если светильник подключен через подобную схему, то при низкой частоте работы устройства лампа будет мигать с определенной периодичностью, но при превышении её сверх 50Гц в человеческих глазах отдельные всплески света сольются в одно ровное свечение. Это особенность человеческого глаза, который не улавливает колебания свыше этого значения. Но и яркость свечения можно регулировать. Чем ниже коэффициент заполнения, а, следовательно, и значение, обратное ему, тем меньше яркость свечения источника.

Аналогичный пример можно использовать и с двигателем постоянного тока, под управлением широтно-импульсного регулятора. При этом низкая частота приведёт к снижению оборотов двигателя, в то время как высокая – к его эффективной работе. Для её достижения используются ключи-полупроводники, обладающие значительным быстродействием и низким коэффициентом проводимости, так как в противном случае возможно запаздывание сигнала.

При необходимости сигналы схемы импульсного регулятора можно усреднять, для этого используются фильтры низких частот, но при подключении двигателя с большой механической инерцией и хорошим значением индуктивности. В этом случае снижение амплитуды и частоты происходит самопроизвольно.

Скважность, а также её обратное значение зависят от уровня моделирующего сигнала, частота таких устройств определяется частотой дублирующего генератора, подающего дополнительный сигнал.

Генератор для получения скважности

Видео

Что такое Скважность, ШИМ, Duty Cycle% ?

Тема названа так чтобы в поисковиках людям было легче найти ответ.
Сразу хочу предупредить я дилетант и могу допустить много не точностей формулировок и определений, если что меня поправят и я поправлю статью. И статья ориентирована на таких же дилетантов как и я.
Дело в том что про эти понятия много где написано. Но почитав всякие умные статьи скорее всего вы хрен чего поймете как и я =)
Пока ко мне в руки не попал штатный соленоид вестгейта Антона и пока я не стал изучать как диагностировать его поломку по мануалу я так и не понимал что такое Duty Cycle (цикл наполнения) и тд.
AVCS клапана управляются по Duty объяснял мне друг электрик =) Только понимания это не давало.
Соленоид вестгейта так же управляется по Duty.
По слухам я представил картину что это клапан который меняет свою пропускную способность тем самым стравливая воздух и прикрывая калитку вестгейта.
Оказывается нихрена подобного он не умеет.
У клапана есть всего два положения вкл +12 вольт (клапан полностью открыт) и выкл 0 вольт (клапан полностью закрыт).

Так вот управление по Duty или скважность это щелканье тумблера вкл выкл вкл выкл, а чтобы понять как щелкать компу нужно знать сколько времени держать в положении вкл и сколько времени держать в положении выкл.
Например вкл 0.1 секунда держим и жмем выкл и держим 0.3 секунды и опять вкл держим 0.1 секунду и так далее, так вот Duty Cycle (цикл наполнения) или скважность это отношение этих длительностей друг к другу. Причем скважность это отношение одного к другому, а Duty Cycle (цикл наполнения) это обратнопропорциональная величина, Тоесть сути это не меняет.

Ну теперь когда знаете что это такое можно уже почитать другие статьи по управлению наддувом и тд и тп =)

Комментарии 10

Какая всё таки обычно частота ШИМ сигнала на управлении VGT турбины?

не знаю вроде addelectronics замерял ) но могу ошибаться

Спрошу у него, спасибо

Я так понял в субе все на ШИМ завязано.

да нет. клапана avcs шим, соленойд шим.
скорость импульсы
обороты импульсы

Суть ты уловил) Duty — это скважность.
Соленоид питается ШИМ-сигналом, но питается им не по прямому назначению широтно-импульсной модуляции, а только для того, чтобы соленоид не перегревался. Сама же работа соленоида, как клапана, один в один повторяет сущность ШИМ. Обычно в буст-контроллерах соленоид работает на частоте около 30гц (а частота ШИМ сигнала обычно около 300гц!), это значит, что он открывается и закрывается 30 раз за секунду, т.е. один рабочий цикл (Duty полное) длится 1/30 секунды, если принять 1/30 секунды за 100%, то 50% от скважности — это 1/15 секунды. Так вот Duty — это процентное соотношение времени открытия соленоида к времени полного цикла. В конкретном случае, если Duty 100% — соленоид открыт все время, т.е. 1/30 секунды, и в конце цикла он не закрывается и начинается следующий цикл, в итоге соленоид просто открыт постоянно. Если делаем Duty 50% — соленоид половину времени цикла будет открыт, а половину закрыт, и пропустит в 2 раза меньше воздуха.

Читать еще:  Что такое высокие обороты двигателя

Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении. Это означает большую частоты цикла. Для моего соленоида частота цикла была максимальна 30гц, быстрее — он просто залипал на крайних режимах. Чем больше частота цикла — тем точнее регулировка наддува.

Но фишка в том, что в буст-контроллерах зачастую Duty обзывают не скважность, а некий коэффициент чувствительности, т.к. алгоритм работы буст контроллера немного сложнее, чем просто задать постоянную скважность соленоиду на частоте 30гц. Если подумать, то станет ясно, что на низких оборотах двигателя скважность напрямую влияет на скорость раскручивание турбины и на интенсивность пинка под зад, на средних оборотах скважность должна занижаться, т.к. это зона передувов, когда турбина выходит на максимальную эффективность своей работы, на высоких оборотах — скважность опять должна увеличиваться, т.к. зачастую трубины ставят маленькие и под отсечку они сдуваются.

Расчет скважности электронным буст-контроллером производится каждый цикл, в моем примере раз в 1/30 секунды. У контроллера должна быть обратная связь — как минимум датчик давления в ВК. У крутых буст контроллеров так же бывает связь с оборотами двигателя, положением дросселя, воткнутой передачей, скоростью авто, температурой во ВК, датчиком детонации и т.д.
Расчет текущего Duty можно получить по формуле:
Duty = (Boost — BoostMin) * (DutyMax — DutyMin) / (BoostMax+Coeff — BoostMin) + DutyMin
Где:
Duty — рассчитываемая скважность на текущий цикл
Boost — текущее давление наддува (обычно в паскалях для целочисленности)
BoostMin — Заранее известный буст при Duty = DutyMin
BoostMax — Заранее известный буст при Duty = DutyMax
Coeff — Коэффицент, влияющий на грубость работы контроллера. Если сделать большим — будет плавать буст, маленьким — передувать.

К примеру в штатном буст контроллере машин Subaru есть карта Duty, в которой с завода для конкретной турбины прописаны значения Duty, необходимые для конкретного давления при конкретном положении дросселя и оборотах двигателя. Таблица с измерениями Обороты и Положение ДЗ. Так же есть такая же таблица, но со значениями желаемого наддува. Таблицы не точные, примерно по 7-8 столбцов и строк, и промежуточные значения рассчитываются методом интерполяции. Так же есть поправочные коэффиценты от температуры в ВК и текущего атмосферного давления.

«Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении.» не совсем понял эту фразу.
Как считаете по какому закону идет управление тем же соленойдом вестгейта? (П, ПИ, ПД, ПИД цифровые)

Суть ты уловил) Duty — это скважность.
Соленоид питается ШИМ-сигналом, но питается им не по прямому назначению широтно-импульсной модуляции, а только для того, чтобы соленоид не перегревался. Сама же работа соленоида, как клапана, один в один повторяет сущность ШИМ. Обычно в буст-контроллерах соленоид работает на частоте около 30гц (а частота ШИМ сигнала обычно около 300гц!), это значит, что он открывается и закрывается 30 раз за секунду, т.е. один рабочий цикл (Duty полное) длится 1/30 секунды, если принять 1/30 секунды за 100%, то 50% от скважности — это 1/15 секунды. Так вот Duty — это процентное соотношение времени открытия соленоида к времени полного цикла. В конкретном случае, если Duty 100% — соленоид открыт все время, т.е. 1/30 секунды, и в конце цикла он не закрывается и начинается следующий цикл, в итоге соленоид просто открыт постоянно. Если делаем Duty 50% — соленоид половину времени цикла будет открыт, а половину закрыт, и пропустит в 2 раза меньше воздуха.

Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении. Это означает большую частоты цикла. Для моего соленоида частота цикла была максимальна 30гц, быстрее — он просто залипал на крайних режимах. Чем больше частота цикла — тем точнее регулировка наддува.

Но фишка в том, что в буст-контроллерах зачастую Duty обзывают не скважность, а некий коэффициент чувствительности, т.к. алгоритм работы буст контроллера немного сложнее, чем просто задать постоянную скважность соленоиду на частоте 30гц. Если подумать, то станет ясно, что на низких оборотах двигателя скважность напрямую влияет на скорость раскручивание турбины и на интенсивность пинка под зад, на средних оборотах скважность должна занижаться, т.к. это зона передувов, когда турбина выходит на максимальную эффективность своей работы, на высоких оборотах — скважность опять должна увеличиваться, т.к. зачастую трубины ставят маленькие и под отсечку они сдуваются.

Читать еще:  Factorio как построить паровой двигатель

Расчет скважности электронным буст-контроллером производится каждый цикл, в моем примере раз в 1/30 секунды. У контроллера должна быть обратная связь — как минимум датчик давления в ВК. У крутых буст контроллеров так же бывает связь с оборотами двигателя, положением дросселя, воткнутой передачей, скоростью авто, температурой во ВК, датчиком детонации и т.д.
Расчет текущего Duty можно получить по формуле:
Duty = (Boost — BoostMin) * (DutyMax — DutyMin) / (BoostMax+Coeff — BoostMin) + DutyMin
Где:
Duty — рассчитываемая скважность на текущий цикл
Boost — текущее давление наддува (обычно в паскалях для целочисленности)
BoostMin — Заранее известный буст при Duty = DutyMin
BoostMax — Заранее известный буст при Duty = DutyMax
Coeff — Коэффицент, влияющий на грубость работы контроллера. Если сделать большим — будет плавать буст, маленьким — передувать.

К примеру в штатном буст контроллере машин Subaru есть карта Duty, в которой с завода для конкретной турбины прописаны значения Duty, необходимые для конкретного давления при конкретном положении дросселя и оборотах двигателя. Таблица с измерениями Обороты и Положение ДЗ. Так же есть такая же таблица, но со значениями желаемого наддува. Таблицы не точные, примерно по 7-8 столбцов и строк, и промежуточные значения рассчитываются методом интерполяции. Так же есть поправочные коэффиценты от температуры в ВК и текущего атмосферного давления.

Sorry, можно смежный вопрос? EJ257 стоковый мозг ДВС.
Если снять фишку соленоида, то Wastegate будет работать в пневмо-механическом аналоговом режиме, без управления через соленоид вакуумной линией. Недодув. Для предотвращения check, в снятую фишку подобрать резистор, из соображений максимального сопротивления (по возможности уменьшить токи, для минимизации нагрева резистора), но чтобы БК воспринимал цепь как исправную и выдавал check.
Вот интересно:
а) каковы четкие параметры (марка) резистора?
б) когда потом назад фишку на соленоид возвратить, то будет передув [гипотетически мозг ДВС «видел» недодув и сигнал на соленоид подавал на открытие вакуума = закрытие клапана Wastegate, а он все равно недодувал (фишка же снята и балластный резистор воткнут), и как бы гипотетически мозг все время подавал сигнал на открытие соленоида]? Или в мозгу ДВС жестко прописаны параметры «точки отсечения» и при возврате фишки на место передува не будет?

Вопрос изучается для возможности заправки 92-95-м бензином при поездке в регионы, слабо затронутые цивилизацией, т.е. 98-й отсутствует. Чтобы потом было легко вернуть все назад в нормальную конфигурацию.

ШИМ амперметр

Артикул: 00030735

Данный прибор предназначен для проверки исполнительных элементов работающих по принципу ШИМ-модулирования. Одновременно с подаваемым ШИМ-импульсом он позволяет измерять силу тока, потребляемую исполнительными элементами на всех режимах работы.

Гарантия от производителя — 1 год.

Доставка по Украине осуществляется компанией «Новая Почта», за пределы Украины посылки отправляются государственной почтовой организацией «Укрпочта». Инструкции к заказам и условия оплаты и доставки

ШИМ амперметр

Комплект проводов для подключения клапана к тестеру

ШИМ амперметр

Технические характеристики:

  1. Напряжение питания прибора постоянное , 11 -16 В;
  2. Скважность импульсов регулируется плавно от 0 до 99 %;
  3. Диапазон частоты ШИМ (импульсов), 10 — 1500 Гц. Шаг регулировки 10Гц;
  4. Максмально измеряемый ток, 29 А (максимальная погрешность датчика тока , 2.5%)
  5. Ток в нагрузке можно замерять при значении ШИМ , 1 — 25 %
  6. Защита по перегрузке срабатывает при токе, более 30 А
  7. Прибор имеет защиту от переполюсовки питания.

Органы управления работой прибора

  1. Регулятор изменения скважности импульсов;
  2. Кнопки «+» и «-» — для установки частоты следования импульсов (после нажатия кнопки «ШИМ» — частота сигнала не регулируется!);
  3. Кнопка «ШИМ» и «СТОП» — для запуска и остановки генератора импульсов;
  4. Кнопка «ТОК» — при нажатии которой, можно измерять ток потребления клапаном в импульсе.
  5. Кнопка «ИМПУЛЬС»

Замер тока потребляемого клапаном

  1. Подключить проверяемый клапан;
  2. Подать питание на прибор (подключить зажимы «крокодил», красный к «плюс 12В АКБ», черный к «минус АКБ»;
  3. Установить необходимую частоту;
  4. Установить скважность импульсов (ШИМ) от 1 до 25 %;
  5. Кратковременно нажать кнопку «ТОК». На индикаторе, отобразится значение тока потребляемого клапаном.

Примечание: при измерении тока, регуляторами частота и длительность ШИМ установите длительность импульса подаваемого на проверяемый клапан равному длительности импульса при работе этого клапана на автомобиле. Например: для клапана ТНВД (регулировка подачи порции топлива) это 100 гц, ШИМ=8%.

ВНИМАНИЕ! при измерении ТОКА в случае срабатывания токовой защиты на индикаторе будет отображаться значение «Перегрузка». Для того, чтобы перейти в рабочий режим нажмите кнопку «СТОП»

Тестирование клапана на различных длительностях скважности импульсов

  1. Подключить проверяемый клапан;
  2. Подать питание на прибор;
  3. Установить необходимую частоту;
  4. Нажать кнопку «ШИМ»
  5. Изменяя скважность импульсов регулятором скважности, проверить работу клапана.
  6. Нажать на кнопку «СТОП».

Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Читать еще:  Что объединяет все двигатели

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T. D = t/T. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку электродвигатель обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством компаратора с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

Ссылка на основную публикацию
Adblock
detector