Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловые двигатели (3)

Тепловые двигатели (3)

Главная > Реферат >Физика

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КАЗАХСТАНСКО-АМЕРИКАНСКИЙ СВОБОДНЫЙ УНИВЕРСИТЕТ КОЛЛЕДЖ

на тему: Тепловые двигатели

учащаяся группы 09 ОГХ — 1

История тепловых двигателей

Виды тепловых двигателей

а) паровая машина

б) двигатель внутреннего сгорания

в) паровая и газовая турбины

г) реактивный двигатель

Экологические проблемы, связанные с тепловыми двигателями

Пути решения экологических проблем

История тепловых двигателей

История тепловых машин уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи.

Примерно тремя столетиями позже в Александрии — культурном и богатом городе на африканском побережье Средиземного моря — жил и работал выдающийся ученый Герон, которого историки называют Героном
Александрийским. Герон оставил несколько сочинений, дошедших до нас, в которых он описал различные машины, приборы, механизмы, известные в те времена.

В сочинениях Герона есть описание интересного прибора, который сейчас называют Героновым шаром. Он представляет собой полый железный шар, закрепленный так, что может вращаться вокруг горизонтальной оси. Геронов шар — это прообраз современных реактивных двигателей.

В то время изобретение Герона не нашло применения и осталось только забавой. Прошло 15 столетий. Во времена нового расцвета науки и техники, наступившего после периода средневековья, об использовании внутренней энергии пара задумывается Леонардо да Винчи. В его рукописях есть несколько рисунков с изображением цилиндра и поршня. Под поршнем в цилиндре находится вода, а сам цилиндр подогревается. Леонардо да Винчи предполагал, что образовавшийся в результате нагрева воды пар, расширяясь и увеличиваясь в объеме, будет искать выход, и толкать поршень вверх. Во время своего движения вверх поршень мог бы совершать полезную работу.

Несколько иначе представлял себе двигатель, использующий энергию пара,
Джованни Бранка, живший на век раньше великого Леонардо. Это было колесо с лопатками, в второе с силой ударяла струя пара, благодаря чему колесо начинало вращаться. По существу, это была первая паровая турбина.

В XVII-XVIII веках над изобретением паровой машины трудились англичане
Томас Севери (1650-1715) и Томас Ньюкомен (1663-1729), француз Дени Папен
(1647-1714), русский ученый Иван Иванович Ползунов (1728-1766) и другие.

Папен построил цилиндр, в котором вверх и вниз свободно перемещался поршень. Поршень был связан тросом, перекинутым через блок, с грузом, который вслед за поршнем также поднимался и опускался. По мысли Папена, поршень можно было связать с какой-либо машиной, например водяным насосом, который стал бы качать воду. В нижнюю откидывающуюся часть цилиндра насыпали поpox, который затем поджигали. Образовавшиеся газы, стремясь расшириться, толкали поршень вверх. После того цилиндр и поршень с наружной стороны обливали диодной водой. Газы в цилиндре охлаждались, и их давление на поршень уменьшалось. Поршень под действием собственного веса и наружного атмосферного давления опускался вниз, поднимая при этом груз.
Двигатель совершал полезную работу. Для практических целей он ни годился: слишком уж сложен был технологический цикл его работы. Кроме того, применение подобного двигателя было далеко не безопасным.

Однако нельзя не усмотреть в первой машине Палена черты современного двигателя внутреннего сгорания.

В своем новом двигателе Папен вместо пороха использовал воду. Этот двигатель работал лучше, чем пороховой, но для серьезного практического использования был также малопригоден.

Недостатки были связаны с тем, что приготовление пара, необходимого для работы двигателя, происходило в самом цилиндре. А что если в цилиндр впускать уже готовый пар, полученный, например, в отдельном котле? Тогда достаточно было бы попеременно впускать в цилиндр то пар, то охлажденную воду, и двигатель работал бы с большей скоростью и меньшим потреблением топлива.

Об этом догадался современник Дени Палена англичанин Томас Севери, построивший паровой насос для откачки воды из шахты. В его машине приготовление пара происходило вне цилиндра — в котле.

Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен. Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле.

Машина Ньюкомена, как и все ее предшественницы, работала прерывисто — между двумя рабочими ходами поршня была пауза. Высотой она была с четырех- пятиэтажный дом и, следовательно, исключительно : пятьдесят лошадей еле-еле успевали подвозить ей топливо. Обслуживающий персонал состоял из двух человек: кочегар непрерывно подбрасывал уголь в топки, а механик управлял кранами, впускающими пар и холодную воду в цилиндр.

Понадобилось еще 50 лет, прежде чем был построен универсальный паровой двигатель. Это произошло в России, на одной из отдаленных ее окраин — Алтае, где в то время работал гениальный русский изобретатель, солдатский сын Иван Ползунов.

Ползунов построил его на одном из Барнаульских заводов. В апреле 1763 года Ползунов заканчивает расчеты и подает проект на рассмотрение. В отличие от паровых насосов Севери и Ньюкомена, о которых Ползунов знал, и недостатки которых ясно осознавал, это был проект универсальной машины непрерывного действия. Машина предназначалась для воздуходувных мехов, нагнетающих воздух в плавильные печи. Главной ее особенностью было то, что рабочий вал качался непрерывно, без холостых пауз. Это достигалось тем, что Ползунов предусмотрел вместо одного Цилиндра, как это было в машине Ньюкомена, два попеременно работающих. Пока в одном цилиндре поршень под действием пара поднимался вверх, в другом пар конденсировался, и поршень шел вниз. Оба поршня были связаны одним рабочим валом, который они поочередно поворачивали то в одну, то в другую стороны. Рабочий ход машины осуществлялся не за счет атмосферного давления, как у Ньюкомена, а благодаря работе пара в цилиндрах.

Весной 1766-года ученики Ползунова, спустя неделю после его смерти, испытали машину. Она работала в течение 43 суток и приводила в движение мехи трех плавильных печей. Потом котел дал течь; кожа, которой были обтянуты поршни (чтобы уменьшить зазор между стенкой цилиндра и поршнем), истерлась, и машина остановилась навсегда. Больше ею никто не занимался.

Создателем другого универсального парового двигателя, который получил широкое распространение, стал английский механик Джеймс Уатт (1736-1819). Работая над усовершенствованием машины Ньюкомена, он в 1784 году построил двигатель, который годился для любых нужд. Изобретение Уатта было принято на ура. В наиболее развитых странах Европы ручной труд на фабриках и заводах все больше и больше заменялся работой машин. Универсальный двигатель стал необходим производству, и он был создан. В двигателе Уатта применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня во вращательное движение колеса.

Читать еще:  Что объединяет все двигатели

Уже потом было придумано машины: направляя поочередно пар то под поршень, то сверху поршня, Уатт превратил оба его хода (вверх и вниз) в рабочие. Машина стала мощнее. Пар в верхнюю и нижнюю части цилиндра направлялся специальным парораспределительным механизмом, который впоследствии был усовершенствован и назван .

Затем Уатт пришел к выводу, что вовсе не обязательно все время, пока поршень движется, подавать в цилиндр пар. Достаточно впустить в цилиндр какую-то порцию пара и сообщить поршню движение, а дальше этот пар начнет расширяться и перемещать поршень в крайнее положение. Это сделало машину экономичней: меньше требовалось пара, меньше расходовалось топлива.

Сегодня один из самых распространенных тепловых двигателей — двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всем мире насчитываются сотни миллионов таких двигателей.

Кпд тепловых двигателей кратко. II

Издревле люди пытались преобразовать энергию в механическую работу. Они преобразовывали кинетическую энергию ветра, потенциальную энергию воды и т.д. Начиная, с 18 века начали появляться машины, преобразовывающие внутреннею энергию топлива в работу. Подобные машины работали, благодаря тепловым двигателям.

Тепловой двигатель – прибор, преобразующий тепловую энергию в механическую работу, за счет расширения (чаще всего газов) от высокой температуры.

Любые тепловые двигатели имеют составные части:

  • Нагревательный элемент . Тело с высокой температурой относительно окружающей среды.
  • Рабочее тело. Поскольку работу обеспечивает расширение, данный элемент должен хорошо расширяться. Как правило, используется газ или пар.
  • Охладитель . Тело с низкой температурой.

Рабочее тело получает тепловую энергию от нагревателя. В следствии, оно начинает расширяться и совершать работу. Чтобы система могла вновь совершить работу, её нужно вернуть в исходное состояние. Поэтому рабочее тело охлаждается, то есть излишняя тепловая энергия, как бы сбрасывается в охлаждающий элемент. И система приходит в изначальное состояние, далее процесс повторяется снова.

Вычисление КПД

Для расчета КПД, введем следующие обозначения:

Q 1 –Количество теплоты получаемое от нагревательного элемента

A’– Работа совершаемая рабочим телом

Q 2 –Количество теплоты полученной рабочим телом от охладителя

В процессе охлаждения, тело передает теплоту, поэтому Q 2 4.2 . Всего получено оценок: 293.

И полезные формулы .

Задачи по физике на КПД теплового двигателя

Задача на вычисление КПД теплового двигателя №1

Вода массой 175 г подогревается на спиртовке. Пока вода нагрелась от t1=15 до t2=75 градусов Цельсия, масса спиртовки уменьшилась с 163 до 157 г Вычислите КПД установки.

Коэффициент полезного действия можно вычислить как отношение полезной работы и полного количества теплоты, выделенного спиртовкой:

Полезная работа в данном случае – это эквивалент количества теплоты, которое пошло исключительно на нагрев. Его можно вычислить по известной формуле:

Полное количество теплоты вычисляем, зная массу сгоревшего спирта и его удельную теплоту сгорания.

Подставляем значения и вычисляем:

Задача на вычисление КПД теплового двигателя №2

Старый двигатель совершил работу 220,8 МДж, при этом израсходовав 16 килограмм бензина. Вычислите КПД двигателя.

Найдем общее количество теплоты, которое произвел двигатель:

Или, умножая на 100, получаем значение КПД в процентах:

Задача на вычисление КПД теплового двигателя №3

Тепловая машина работает по циклу Карно, при этом 80% теплоты, полученной от нагревателя, передается холодильнику. За один цикл рабочее тело получает от нагревателя 6,3 Дж теплоты. Найдите работу и КПД цикла.

КПД идеальной тепловой машины:

Вычислим сначала работу, а затем КПД:

Ответ: 20%; 1,26 Дж.

Задача на вычисление КПД теплового двигателя №4

На диаграмме изображен цикл дизельного двигателя, состоящий из адиабат 1–2 и 3–4, изобары 2–3 и изохоры 4–1. Температуры газа в точках 1, 2, 3, 4 равны T1 , T2 , T3 , T4 соответственно. Найдите КПД цикла.

Проанализируем цикл, а КПД будем вычислять через подведенное и отведенное количество теплоты. На адиабатах тепло не подводится и не отводится. На изобаре 2 – 3 тепло подводится, объем растет и, соответственно, растет температура. На изохоре 4 – 1 тепло отводится, а давление и температура падают.

Ответ: См. выше.

Задача на вычисление КПД теплового двигателя №5

Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найдите КПД цикла.

Запишем формулу для КПД:

Вопросы на тему тепловые двигатели

Вопрос 1. Что такое тепловой двигатель?

Ответ. Тепловой двигатель – это машина, которая совершает работу за счет энергии, поступающей к ней в процессе теплопередачи. Основные части теплового двигателя: нагреватель, холодильник и рабочее тело.

Вопрос 2. Приведите примеры тепловых двигателей.

Ответ. Первыми тепловыми двигателями, получившими широкое распространение, были паровые машины. Примерами современного теплового двигателя могут служить:

  • ракетный двигатель;
  • авиационный двигатель;
  • газовая турбина.

Вопрос 3. Может ли КПД двигателя быть равен единице?

Ответ. Нет. КПД всегда меньше единицы (или меньше 100%). Существование двигателя с КПД равным единице противоречит первому началу термодинамики.

КПД реальных двигателей редко превышает 30%.

Вопрос 4. Что такое КПД?

Ответ. КПД (коэффициент полезного действия) – отношение работы, которую совершает двигатель, к количеству теплоты, полученному от нагревателя.

Вопрос 5. Что такое удельная теплота сгорания топлива?

Ответ. Удельная теплота сгорания q – физическая величина, которая показывает, какое количество теплоты выделяется при сгорании топлива массой 1 кг. При решении задач КПД можно определять по мощности двигателя N и сжигаемому за единицу времени количеству топлива.

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Цикл (или процесс) Карно – это идеальный круговой цикл, состоящий из двух адиабат и двух изотерм. Назван так в честь французского инженера Сади Карно, который описал данный цикл в своем научном труде «О движущей силе огня и о машинах, способных развивать эту силу» (1894).

Задача на цикл Карно №1

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Читать еще:  Chery amulet троит двигатель

Рассчитаем КПД цикла:

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Задача на цикл Карно №3

Изобразите цикл Карно на диаграмме и опишите его

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Вопрос на цикл Карно №2

Может ли коэффициент полезного действия в цикле Карно быть равным 100%?

Ответ. Нет. КПД цикла карно будет равен 100% только в случае, если температура холодильника будет равна абсолютному нулю, а это невозможно.

Если у вас остались вопросы по теме тепловых двигателей и цикла Карно, вы можете смело задавать их в комментариях. А если нужна помощь в решении задач или других примеров и заданий, обращайтесь в

Реферат: Тепловые двигатели

Доклад по физике

Подготовил ученик Проверила

Тепловой двигатель .

Ещё в давние времена люди старались использовать энер­гию топлива для превращения её в механическую. В XVIIв. был изобретён тепловой двигатель, который в последующие годы был усовершенствован, но идея осталась той же. Во всех двига­телях энергия топлива переходит сначала в энергию газа или пара, а газ (пар) расширяясь, совершает работу и охлаждается, а часть его внутренней энергии при этом превращается в механическую энергию. К сожалению, коэффициент полезного действия не высок.

К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.

Двигатель внутреннего сгорания.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.

Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах и др.

Паровая турбина.

В современной технике так же широко применяют и другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.

В современных турбинах, для увеличения мощности применяют не один, а несколько дисков, насажанных на общий вал. Турбины применяют на тепловых электростанциях и на кораблях.

Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока.

Тепловые двигатели — паровые турбины — устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном — поршневые двигатели внутреннего сгорания; на водном — ДВС и паровые турбины; на ж/д. тепловозы с дизельными установками; в авиации — поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.

Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.

Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.

В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу две-три тонны — свинца.

Один из путей уменьшения загрязнения окружающей среды — использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.

Выбросы вредных веществ в атмосферу — не единственная сторона воздействия энергетики на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.

Во владимирской области в 2001 году суммарные выбросы загрязняющих веществ в атмосферу, определённые на основании информации природопользователей об охране атмосферного воздуха по стационарным и передвижным источникам составили 115.295 тыс. т. в год, в том числе твёрдые 7.1% (8.192 тыс. т.) газообразные и жидкие 92.9%(107.103 тыс. т.)

Валовые выбросы от автотранспорта за 1996 – 2001 года представлена в таблице 1.

Загрязняющие вещества.199619971998199920002001
Всего тыс./год47.07500.08500.77754.03859.2161.977
В том числе
Оксид углерода35.6337.5638.06340.74444.79146.954
Оксиды азота5.055.6445.6876.0026.56.72
Углевода5.856.266.4516.6257.1967.567
Сажа0.0510.060.0510.0620.0670.065
Диоксида серы0.460.530.4980.5280.630.644
Соединения свинца0.0290.0260.0270.0230.0260.027
Читать еще:  Двигатель вальтера принцип работы

Рост 20001 году числа автомобилей, находящихся в личной собственности населения, составляет 7.5% (13715 единиц) по отношению к 2001 году, причём количество грузовых автомобилей увеличилось на 17.1%, автобусов на 8.5%специальных на 25.5% и легковых автомобилей на 6.8% что послужило причиной увеличения выбросов от передвижных источников.

В 2001 году произошло увеличение выбросов свинца от передвижных источников примерно на 0.002 тыс. т. (7.4%) что объясняется общим увеличением количества единиц автотранспорта. Причём при расчёте выбросов принято так – же как и в предыдущем году, что применение этиленового бензина составило 20%.

Что такое тепловой двигатель кратко

Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения. Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден.
Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.’

Рассмотрим это на примере идеальной тепловой машины.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее часть

Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину, которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q1 – Q2)/Q1 = (Т1 – Т2)/Т1 (4.9)

или h = А/Q1; h = (Т1 – Т2)/Т1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре.

Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3, которые устанавливают на автомобилях, лодках и т.п. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности двигателей внутреннего сгорания обычной схемы.

Воздух сначала поступает в цилиндр, сжимается и нагревается до высокой температуры. В раскаленный воздух с помощью форсунки впрыскивается самовоспламеняющееся и быстро сгорающее топливо, за счет чего мотор и начинает работать. Для таких двигателей необходимо специальное дизельное топливо. Из уроков физики все мы знаем, что тепловая энергия может преобразовываться в механическую. Именно это и происходит, когда в цилиндре двигателя сгорает топливо. Тепло, превращаясь в механическую работу, начинает двигать поршень, который в цилиндре двигается возвратно-поступательно. Коленчатый вал, связанный с поршнем при помощи шатуна, вращается.

Во время работы, поршень то приближается, то удаляется от коленчатого вала. Когда эти две детали сближаются, то в цилиндр поступает горючая смесь. При движении цилиндра в обратную сторону, в нем увеличивается давление. Сжатая горючая смесь в этот момент готова к сгоранию, едва стоит вспыхнуть искре, как смесь легко воспламеняется и выделяет газы, которые нужны для того, чтобы привести мотор в движение. Цилиндр соединен с трубопроводом, через который из двигателя выбрасываются отработанные газы.

Одно движение поршня к коленчатому валу или обратно называется ходом. Если за четыре хода поршня вал сделает два оборота вокруг своей оси, значит, закончился так называемый рабочий цикл. Двигатель, рабочий цикл которого совершается за два оборота коленчатого вала, называется четырехкратным. Существуют также и двукратные двигатели. Рабочий цикл у них совершается за два хода поршня и за один оборот коленчатого вала. В автомобильных моторах такие двигатели практически не применяются, зато их широко используют для мотоциклов.

Чем сильнее будет давление на поршень при сгорании горючей смеси, тем больше мощность двигателя. Поэтому выгодно увеличивать степень сжатия в двигателе. В этом случае из той же порции топлива получается больше полезной работы. Многие автолюбители пытаются самостоятельно отрегулировать двигатель так, чтобы расходовать меньше топлива, но при этом не терять мощности. Но увлекаться этим не следует, поскольку при сильном увеличении степени сжатия горючая смесь сгорает слишком быстро (этот процесс называется детонация), что вызывает неустойчивую работу двигателя. При этом в работающем двигателе слышен стук, мощность значительно снижается, а из глушителя идет черный дым.

Ссылка на основную публикацию
Adblock
detector