Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство кривошипно-шатунного механизма

Устройство кривошипно-шатунного механизма

Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Поршень

Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.

Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.

В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.

В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.

Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.

Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.

В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.

Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.

В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.

В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.

Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.

Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.

Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.

Читать еще:  406 двигатель волга сколько клапанов

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Коленчатый вал

Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.

Коленвал 4-х цилиндрового двигателя

Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.

Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.

Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.

У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.

Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.

Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.

В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.

В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.

Маховик

С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.

Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.

Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.

Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.

Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.

Кривошипно-шатунный механизм как основа движения

Приветствую читателей нашего уютного блога! Сейчас поговорим о сердце наших железных коней, двигателях внутреннего сгорания. А если точнее, кривошипно шатунный механизм – один из ключевых механизмов мотора.

Трудно переоценить назначение кривошипно шатунного механизма. По сути, именно его мы обязаны благодарить за то, что наши железные кони не стоят на месте, а могут перевозить наши бренные тела и дарить нам радость вождения.

Если говорить сухим техническим языком, то назначение КШМ предназначено для преобразования энергии сгоревшей топливно-воздушной смеси в механическое вращение.

Естественно, кривошипно шатунный механизм не монолитная конструкция и состоит из ряда более простых деталей, о которых пойдёт речь ниже.

Кривошипно шатунный механизм: дьявол кроется в деталях

Условно элементы кривошипно-шатунного механизма можно разделить на две большие подгруппы: подвижные и неподвижные части.

К первой относятся поршни с кольцами и пальцами, шатуны, коленчатый вал (в простонародье коленвал), а также маховик.

Блок цилиндров

Неподвижные элементы КШМ представлены блоком цилиндров и головкой блока цилиндров, картером, а также прокладкой, расположенной между блоком и головкой.

Поршень

А теперь чуточку подробнее о роли каждого из актёров театра кривошипно шатунного механизма. Одним из первых удар сгорающей топливно-воздушной смеси принимает на себя поршень.

Этот героический элемент представляет собой металлическую цилиндрическую деталь, грубо говоря, имеющую форму стакана.

На самом деле его форма довольно непростая – с канавками, выпуклостями, отверстиями и вырезами.

Все эти сложности форм нужны не только для эффективной работы мотора. Чтобы было где разместить поршневые кольца, а также куда вставить поршневой палец, к которому крепится следующая важная деталь механизма – шатун.

Шатун

Смысл существования шатуна прост, как пять копеек — передача поступательного движения поршня коленчатому валу.

Довольно скучная, но важная роль. Сам по себе шатун выглядит как металлический стержень двутаврового сечения.

С одного его конца находится отверстие для крепления к поршню при помощи поршневого пальца, а с другого – полукольцо, которое надевается на шатунную шейку вала и фиксируется болтовыми соединениями специальной крышкой.

Стоит отметить, что соединение шатуна с коленвалом подвижное – он же должен вращаться.

Коленчатый вал

Важность следующего элемента КШМ сложно переоценить – это коленчатый вал.

Конечно, назвать эту деталь валом в привычном понимании довольно трудно – форма у него сложная и всё из-за того, что к нему крепятся все шатунно-поршневые связки двигателя.

Коленвал — ключевой вращающий элемент мотора и ему приходится выдерживать невероятные нагрузки, поэтому и требования к качеству его исполнения и прочности материалов высочайшие.

Основными деталями коленчатого вала являются шатунные шейки (места, куда крепятся шатуны), щёки, коренные шейки и противовесы.

Читать еще:  Электрическая схема управления двумя двигателями

Кстати, своё название кривошипно шатунный механизм получил именно благодаря части коленвала. Если быть точным, кривошипу – так иногда называют связку шатунной шейки и щёк по обе стороны от неё.

Маховик

Венчает коленчатый вал с одной из сторон маховик.

Нужно отметить, что, несмотря на свою относительную внешнюю простоту, маховик играет сразу несколько ролей.

Во-первых, в его главную задачу входит поддержание равномерного вращения коленвала во время работы мотора.

Во-вторых, именно это скромное металлическое колесо выступает связующим звеном между стартером и коленчатым валом, когда Вы поворачиваете ключ зажигания для запуска двигателя.

Практически все подвижные части кривошипно шатунного механизма располагаются в блоке цилиндров. А закрывает всё это крутящееся и вращающееся безобразие от наших с Вами глаз головка блока цилиндров.

В неё, как правило, встроены клапаны, свечи и каналы для подвода охлаждающей жидкости, масла, а также воздушно-топливной смеси.

Нужно отметить, что именно блок цилиндров вместе с головкой обуславливают такой немаловажный параметр двигателя, как его масса.

В классическом исполнении эти элементы изготавливаются из чугуна, но, благодаря современным технологиям, автопроизводители всё чаще применяют алюминий в их конструкции, что благотворно влияет на вес мотора и, как следствие, всего автомобиля.

Применение лёгких сплавов стало возможным даже в столь критичном элементе блока. Гильзы цилиндров (в них перемещаются поршни), должны обладать стойкостью к износу и выдерживать высокие температуры.

А сколько цилиндров у твоего коня?

В заключение, дорогие наши читатели, хотелось бы сказать несколько слов о видах компоновки двигателей внутреннего сгорания и схемах расположения цилиндров.

Автомобильные концерны комплектуют свои творения моторами нескольких видов, а именно:

  • рядными;
  • V-образными;
  • оппозитными;
  • W-образными.

С точки зрения баланса, самыми оптимальными являются рядные и оппозитные двигатели.

Первые довольно распространены в автомире – рядные четырёхцилиндровые агрегаты встречаются сплошь и рядом. А вот судьба оппозитных не столь публична, они стали синонимом некой эксклюзивности и «клубности».

Так, к примеру, их можно встретить в недрах спортивных Porsche или Subaru.

Оптимальным же сочетанием характеристик обладают V-образные и их родственные W-образные двигатели. На их базе строят как доступные для среднестатистического автолюбителя машины, так и сумасшедшие суперкары, стоимость которых столь же невероятна, как и характер.

Работа W-образного двигателя:

Уважаемые посетители блога, в этой небольшой статье мы попытались прояснить назначение кривошипно шатунного механизма, рассмотреть его в общих чертах его компоненты.

Читайте статьи на блоге и повышайте свой профессиональный уровень.

Устройство кривошипно-шатунного механизма двигателя

Кривошипно-шатунный механизм двигателя состоит из поршней, поршневых колец, поршневых пальцев, шатунов, коленчатого вала и маховика. Поршень с кольцами и пальцем образует поршневую группу, шатун с подшипниками — шатунную группу.

Поршень . Поршень представляет собой металлический стакан, установленный в цилиндре с некоторым зазором. При рабочем ходе поршень днищем воспринимает давление газов, а при других ходах осуществляет вспомогательные такты. Верхняя усиленная часть поршня, на которую воздействует давление газов, называется головкой, а нижняя направляющая часть — юбкой. Приливы в стенках юбки, служащие для установки поршневого пальца, называются бобышками.

Поршни карбюраторных двигателей изготовляют из алюминиевых сплавов. Алюминиевые поршни обладают небольшой массой, вследствие чего уменьшаются силы инерции, а следовательно, и нагрузки на детали двигателя при его работе. Кроме того, алюминиевые поршни, так же как и алюминиевые головки цилиндров, обладают лучшей теплопроводностью, поэтому они меньше нагреваются при работе и способствуют снижению температуры рабочей смеси.

Поршневые кольца. На поршне устанавливают компрессионные и маслосъемные кольца. Компрессионные кольца уплотняют поршень в цилиндре и служат для предотвращения прорыва газов через зазор между юбкой поршня и стенкой цилиндра. Маслосъемные кольца снимают излишки масла со стенок цилиндров, препятствуя проникновению его в камеру сгорания. Компрессионные кольца устанавливают в верхние канавки на головке поршня (два-три кольца). Маслосъемные кольца (одно-два) располагают под компрессионными кольцами на головке или одно кольцо размещают внизу на юбке. Компрессионные кольца изготовляют из чугуна в виде индивидуальных отливок и обрабатывают резанием; торцовую поверхность колец шлифуют. На кольце делают прямой вырез, называемый замком, позволяющий кольцу пружинить. Маслосъемные кольца, также изготовляемые из чугуна, обычно имеют проточку на наружной поверхности и сквозные прорези. Маслосъемные кольца устанавливают в канавки с отверстиями в стенке поршня. При движении поршня маслосъемное кольцо снимает излишнее масло со стенок цилиндра, и через прорези и отверстия в поршне масло отводится в картер. Кроме чугунных маслосъемных колец с прорезями применяют также стальные составные маслосъемные кольца, представляющие собой два стальных плоских кольца (диска), между которыми установлен осевой расширитель, прижимающий их к стенкам канавки. Для прижатия колец к стенке цилиндра под ним в канавке установлен радиальный расширитель. Оба расширителя имеют вид стальных гофрированных пружинящих колец.

Поршневой палец . Для шарнирного соединения поршня с шатуном предназначен поршневой палец, представляющий собой короткую стальную трубку. Палец проходит через верхнюю головку шатуна и концами лежит в бобышках поршня. При работе двигателя на палец действуют силы, стремящиеся его изогнуть, а поверхность пальца подвергается износу в верхней головке шатуна и бобышках поршня.

Чтобы палец обладал достаточной прочностью и износоустойчивостью, его изготовляют из мягкой углеродистой или специальной легированной стали и после обработки резанием подвергают термообработке — цементируют или закаливают токами высокой частоты (ТВЧ), в результате чего трущаяся поверхность пальца становится твердой и износоустойчивой. Наружную поверхность пальца шлифуют. Для того чтобы при работе двигателя палец не мог выйти из поршня и повредить стенки цилиндра, его закрепляют по бокам двумя пружинящими стопорными кольцами, установленными в канавках бобышек поршня.
На двигателях широко применяют пальцы плавающего типа. Такой палец может проворачиваться и в бобышках поршня, и в верхней головке шатуна, которая в этом случае снабжается бронзовой втулкой. У плавающего пальца вся поверхность рабочая, поэтому он меньше изнашивается и уменьшается возможность его заедания.

Шатун. Шатун передает усилие от поршня на коленчатый вал и вместе с валом преобразует возвратно-поступательное движение поршня во вращательное движение вала. Основными элементами шатуна являются стержень , верхняя и нижняя головки . Шатун изготовляют из углеродистой или специальной стали путем штамповки нагретых заготовок, после чего его подвергают обработке резанием и термообработке (закалке и отпуску). Нижняя головка шатуна служит для соединения его с шатунной шейкой коленчатого вала. Для возможности сборки с валом нижнюю головку шатуна делают разъемной. Крышку 9 крепят к шатуну двумя шатунными болтами 4, изготовленными из специальной стали и термически обработанными. Болты имеют шлифованные пояса и точно подогнаны к отверстиям в шатуне и крышке, что обеспечивает высокую точность соединения крышки с шатуном и точность формы подшипника при закреплении крышки. Чтобы избежать ослабления крепления, гайки шатунных болтов надежно стопорят шплинтами, стопорными шайбами или контргайками. Применяют также самоконтрящиеся гайки с мелкой резьбой.

Читать еще:  Что такое ацп двигателя

Чтобы правильно собрать шатун с поршнем и установить его в двигателе в нужном положении, на шатуне делают соответствующие метки. На нижней головке шатуна и на крышке обычно выбивают порядковый номер шатуна.

Коленчатый вал . С помощью шатунов коленчатый вал воспринимает силы, действующие на поршни от давления газов в цилиндрах. Развиваемый на коленчатом валу крутящий момент передается механизмам трансмиссии автомобиля.

Маховик. Выход поршня из мертвых точек облегчает маховик, который представляет собой чугунный, тщательно отбалансированный диск, имеющий определенную массу. Маховик не только обеспечивает равномерное вращение коленчатого вала во время работы двигателя, но и способствует также преодолению сопротивления сжатия в цилиндрах при пуске двигателя. Кроме того, маховик, обладая энергией, запасенной при вращении, позволяет двигателю преодолевать кратковременные перегрузки, например при трогании автомобиля с места и т.д.
Маховик крепится к фланцу или торцовой шейке коленчатого вала болтами 16, которые шплинтуются. Для точного центрирования маховика на фланце служат установочные штифты, запрессованные в него, либо бурт самого фланца или шейки. На ободе маховика закреплен стальной зубчатый венец 12 для запуска двигателя стартером и нанесены установочные метки для определения ВМТ поршня первого цилиндра и установки зажигания, а также сделаны балансировочные метки, необходимые для правильной сборки маховика с коленчатым валом и сохранения
их балансировки.

Что такое устройство кшм двигателя

КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ ДВИГАТЕЛЯ АВТОМОБИЛЕЙ МАЗ-500

Устройство кривошипно-шатунного механизма дизельного двигателя ЯМЗ-236

Высокое давление вспышки в цилиндре и резкое нарастание давлений сгорания по углу поворота коленчатого вала являются особенностью рабочего процесса дизеля. В связи с этим значительно повышается нагрузка на кривошипно-шатунный механизм. Отсюда вытекает необходимость создания прочного и надежного кривошипно-шатунного механизма, от которого зависит работоспособность всего двигателя.

Одной из особенностей кривошипно-шатунного механизма двигателя ЯМЗ-236 является применение полноопорного коленчатого вала с установкой на одну шатунную шейку вала двух шатунов, расположенных друг против друга. Вследствие этого увеличилась ширина шатунных шеек по сравнению с шатунными шейками однорядных двигателей, а противоположно расположенные цилиндры оказались смещенными по длине двигателя на ширину шейки.

По сравнению с неполноопорной схемой коленчатого вала с шестью шатунными шейками, принятая схема существенно сокращает длину двигателя, уменьшает изгибающие моменты, действующие на щеки, прилегающие к опорным шейкам вала, а также уменьшает суммарную деформацию вала. Кроме того, коленчатый вал при такой конструкции отличается большей простотой и технологичностью ремонта.

Коленчатый вал 1 (рис. 16) изготовлен из высокоуглеродистой стали 50Г методом горячей штамповки, имеет четыре коренные и три шатунные шейки.

Все шейки коленчатого вала, как коренные, так и шатунные, подвергаются поверхностной закалке т. в. ч. на глубину 3,5—4,5 мм и имеют твердость HRC 52—62.

Шатунные шейки расположены по отношению друг к другу под углом 120°.

Рис. 16. Кривошипно-шатунный механизм:
1 — коленчатый вал; 2 — передний выносной противовес коленчатого вала; 3 — шкив;
4 — болт под ключ для проворачивания коленчатого вала: 5—маслоотражатель; 6 — шестерня коленчатого вала; 7 — заглушка; 5 — шатун; 9 — поршень правого ряда цилиндров; 10 — поршневой палец; 11 — втулка: 12 — компрессионные поршневые кольца; 13 — маслосъемные поршневые кольца; 14 — полость в шатунной шейке; 15 — поршень левого ряда цилиндров; 16 — противовесы коленчатого вала на кривошипах;
17— маслоотражатель; 18 — маховик; 19 — задний выносной противовес; 20—крышка; 21— установочный штифт крышки; 22 — упорные полукольца; 23—крышка шатуна

В целях снижения веса коленчатого вала шатунные шейки сделаны полыми, а внутренняя полость их используется для дополнительной центробежной очистки масла. Масло из поперечных каналов в коренных шейках подводится по наклонным каналам в полость шатунной шейки, где под действием центробежной силы посторонние частицы, попавшие в масло, оседают внутри полости. Торцы полости закрыты заглушками, которые при ремонте выпрессовываются, и полости очищаются от накопившейся грязи.

Для повышения надежности и долговечности двигателя рабочие поверхности вала обработаны с большой точностью и имеют высокую чистоту обработки. Отклонение от формы правильного цилиндра допускается не более 10 мкм.
Чтобы уменьшить напряжения в галтелях, места перехода от коренной шейки к щекам выполнены по двум сопряженным радиусам. Кроме того, галтели коренных и шатунных подшипников упрочнены с помощью наклепа.

Передние щеки коленчатого вала имеют некоторое утолщение, что является дополнительной мерой по предотвращению усталостных поломок в результате изгибных колебаний передней части вала.

Для уравновешивания двигателя и разгрузки коренных подшипников от сил инерции возвратно-поступательно движущихся масс поршней и шатунов и неуравновешенных центробежных сил на ,щеках коленчатого вала установлены шесть противовесов 16, в сборе с которыми вал балансируется. Чтобы уменьшить размеры и вес кривошипно-шатунного механизма, в систему уравновешивания, кроме того входят выносные противовесы.

Передний противовес 2 посажен на передний конец коленчатого вала, а задний противовес 19 сдел,ан в виде неуравновешенной массы на маховике. Все противовесы, за исключением переднего, крепятся к щекам коленчатого вала болтами, головки которых для ‘.большей надежности приваривают к противовесам.

Помимо переднего противовеса, на переднем конце вала напрессована шестерня 6, имеющая паз для сегментной шпонки. Кроме того, на конце вала установлен круглый маслоотража* тель 5, прижатый к противовесу гайкой, законтренной на валу замковой шайбой. Впереди противовеса насажен шкив 3 привода водяного насоса, связанный с валом также сегментной шпонкой и крепящийся болтом, завертываемым в торец вала.

На заднем конце вала напрессован маслоотражатель 17, который дополнительно закреплен на валу путем вдавливания его металла в четыре отверстия, просверленные в теле вала. К фланцу на задней части вала болтами крепится маховик 18. Цилиндрическую поверхность фланца обрабатывают так же, как и поверхность шеек коленчатого вала. Для точной фиксации положения маховик,а относительно шеек коленчатого вала во фланец запрессованы два штифта.

Монтаж переднего конца вала на двигателе показан на рис. 6. Конец вала пропущен через отверстие крышки 11 распределительных шестерен, в которое запрессованы маслоотражатель и резиновый самоподжимной сальник, изготовленный из маслобензостойкой резины.

Уплотнение заднего конца вала, проходящего через отверстие картера маховик’а, конструктивно выполнено так же, как и переднего конца.

Для фиксации вала от осевого смещения в выточках задней коренной опоры установлены четыре бронзовых упорных полукольца 22 (рис. 16) толщиной 7,5 мм, являющихся по

существу упорным подшипником. Для предохранения от проворачивания полукольца фиксируются штифтами 21, запрессованными в крышку заднего коренного подшипника. Осевое перемещение вала допускается в пределах 0,121—0,265 мм.

Момент затяжки болтов крепления крышек коренных подшипников равен 30—32 кГ-м.

Ссылка на основную публикацию
Adblock
detector