Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое охлаждение лучше: жидкостное или воздушное

Какое охлаждение лучше: жидкостное или воздушное?

Основная масса современных водителей понятия не имеет что такое воздушное охлаждение. Некоторая часть населения, сопоставляет такой вид вывода лишней температуры с мотоциклами, которые, в большинстве своем, тоже уже охлаждаются различными тосолами и антифризами. Некоторые еще помнят «Запорожцы», Фольксвагены Жуки, середины прошлого века, и некоторые модели Порше. И только малая доля водителей понимает, что значит ездить на машине с мотором охлаждаемым воздухом, какие это дает преимущества перед жидкостным и какие имеет недостатки.

Описывать систему жидкостного охлаждения двигателя я не буду, итак, все сталкиваются с ней каждый день. А вот что такое воздушное охлаждение и с чем его едят, попробуем разобрать по подробнее.

Воздушное охлаждение ДВС

Случилось так, что подобные двигатели стали ни кому не нужны. Почему? Вселенский заговор, конструктивная особенность, спрос среди населения или что-либо другое, в общем, ни кто из простых смертных не знает. Однако, сделали это напрасно, ведь с точки зрения практичности, надежности и экономической целесообразности для семейного бюджета, такие моторы вполне могут дать фору жидкостным.

В тот период жидкостные системы охлаждения называю водяными, так как антифризы не были распространены и все заливали в радиатор воду. В воздушный контур заливать ни чего не надо было и это являлось одним огромным плюсом таких двигателей. Рассмотрим ближе преимущества и недостатки таких ДВС.

Достоинства мотора с воздушным охлаждением

Из-за малого количества деталей, он был проще в эксплуатации и дешевле в ремонте. Легче починить одну деталь, чем десяток. Как гласит статистика авторемонтов, то 20% поломок, связанных с автомобилем приходится на систему охлаждения.

Недостатки

Далее пойдут недостатки, которые не могут быть объективными, так как были выявлены владельцами «Запорожцев».

Мотор перегревается — неправда. Температура охлаждающей жидкости намного выше, чем температура воздуха за бортом и поэтому двигатель остывает быстрее.

Мотор плохо нагревался зимой и машина долго была холодной — тоже фантазия. Ввиду того, что мотор не опоясывался контуром холодной жидкости, то после первого пуска мотор разогревался быстрее, так как не было дополнительных охлаждающих элементов.

Двигатель «запорожца» был неплохим, сгубило его недостаточное сервисное обслуживание. Как его ремонтировать никто толком не знал, заправляли его некачественным топливом, специализированных сервисов не было и это не мудрено, так как машина не задействовалась в структурах скорой помощи, милиции или такси. Поэтому и дела до нее не было.

А вот и объективные недостатки:

  • Малая мощность;
  • Большой размер агрегата;
  • Плохая звукоизоляция;
  • Неравномерность обдува и частичный перегрев;
  • Чувствительность к качеству ГСМ.

Данные факторы не позволяют судить об авто, как о комфортном, однако, смотря с какой стороны посмотреть. Двигатель с воздушным охлаждением больше по размеру, чем с водяным. Все так! Если сравнивать чисто двигатели между собой как отдельные агрегаты. Но стоит добавить сопутствующие элементы, то водяной выходит объемнее, из-за радиатора, проводящих трубок и патрубков, водяного насоса, термостата и расширительного бочка (которые еще и часто ломаются).

Неравномерность обдува и частичный перегрев связан с загрязненностью мотора. Хороший слой пыли или грязи препятствуют эффективному отбору тепла с мотора, поэтому необходимо тщательнее следить за чистотой ДВС.

Вот и выходит, что сам по себе двигатель с воздушным охлаждение не так уж и плох и прикрыли его развитие по непонятным причинам. Ибо инженеры Порше, практически справились со многими недостатками подобных моторов, так как они производили свои знаменитые спортивные купе с моторами на воздушном охлаждении аж до 1998 года. А ребята из Porsche знают толк в моторах.

Запчасти на мотоблоки дизель водяное охлаждение

Дизельные мотоблоки с водяным охлаждением пользуются спросом среди фермеров и садоводов. Они давно зарекомендовали себя, как мощная и экономичная техника. Что касается износостойкости, то при соблюдении всех правил эксплуатации и своевременном техосмотре, данные дизельные мотоблоки могут прослужить десятилетиями. Однако, ремонт периодически необходим, а значит – нужны качественные и доступные комплектующие.

Дизельные мотоблоки с водяным охлаждением пользуются спросом среди фермеров и садоводов. Они давно зарекомендовали себя, как мощная и экономичная техника. Что касается износостойкости, то при соблюдении всех правил эксплуатации и своевременном техосмотре, данные дизельные мотоблоки могут прослужить десятилетиями. Однако, ремонт периодически необходим, а значит – нужны качественные и доступные комплектующие.

В интернет-магазине Agro-Moto TATA представлены такие запчасти на дизельные мотоблоки с водяным охлаждением, как:

  • Топливные баки;
  • Блоки мотора;
  • Поршневая группа;
  • Сцепление в сборе;
  • Корпус редуктора;
  • Подшипники и шестерни;
  • Прокладки, сальники и др.

Для удобства клиентов все детали в каталоге разделены на категории по мощности двигателя. Таким образом, можно гораздо быстрее и точнее подобрать запчасти. Также отдельно есть категория комплектующих на редуктор и КПП.

Техническое обслуживание и замена запчастей на мотоблоках с водяным охлаждением

Своевременный технический осмотр – залог исправности мотоблока. Не стоит пренебрегать плановым осмотром через те промежутки времени, который рекомендует производитель. Даже если кажется, что с техникой все в порядке и причин для осмотра нет. Некоторые неисправности могут проявиться позже, но деталь уже на грани износа. Лучше предупредить поломку, чем останавливать работу из-за ремонта. Основного технического осмотра дизельный мотоблок требует раз в 100 часов работы, в который входит:

  1. Замена моторного масла и обслуживание топливного фильтра. Не забывайте промывать фильтр и сетку масляного фильтра от мелких частиц грязи, а также вовремя менять фильтрующие элементы.
  2. Проверяйте зазор между нажимным подшипником и опорным диском сцепления. Меняйте диски сразу, если заметили износ.
  3. Проверяйте состояние движущих механизмов, а именно муфты сцепления, тормоза, рулевого управления.
  4. Проверьте хорошо ли затянуты шпильки, с помощью которых крепится блок цилиндра. При необходимости подтяните.
  5. Промойте узел фильтрации топлива, который расположен непосредственно в баке – там собирается много грязи и отложений при фильтрации дизельного горючего.
  6. Проверьте уровень масла в КПП, при необходимости долейте.

Так как в данных мотоблоках водяное охлаждение, необходимо также следить за состоянием радиатора. Проверяйте уровень охлаждающей жидкости и следите, чтобы вентилятор работал исправно.

Следующий техосмотр необходимо проводить спустя 500 часов работы и в него уже входит проверка работоспособности блока цилиндров и поршневой группы, обслуживание данного узла и замена износившихся комплектующих. Разобраться в устройстве данной техники вполне можно самостоятельно, тем более что в инструкции подробно указано как проводить осмотр и ремонт. Не стоит также забывать о том, что мотоблоки нужно правильно хранить в межсезонье, особенно — в холодное время года.

Заказывайте запчасти на дизельные мотоблоки с водяным охлаждением на нашем сайте по выгодным ценам. Мы предлагаем опт, розницу и возможность сотрудничества. Доставка заказов производится по России почтовыми сервисами на выбор. Оплата наложенным платежом, наличными при самовывозе, на банковскую карту или безналичный расчет.

Авиационный двигатель: воздушного или водяного охлаждения?

Рассматривать станем на примерах истребителей, просто потому, что бомбардировщику с его задачами, в принципе, без разницы, на каком двигателе лететь. Летим и летим, долетели, высыпали бомбы, летим назад. У истребителей все было несколько сложнее в плане задач.

Читать еще:  Что требуется для работы двигателя

Итак, кто был лучше: двигатель воздушного охлаждения или водяного?

Да, будем называть двигатель жидкостного охлаждения по привычке водяным, поскольку ну какие там антифризы были в 30-40 годах прошлого века? В лучшем случае – вода с этиленгликолем. В худшем – вода с солью или просто вода.

Противостояние «жидких» и «воздушных» двигателей началось тогда, когда появились эти моторы. Точнее, когда инженеры додумались до того, что стоит прекратить вращать цилиндры роторного мотора вокруг коленвала. И так появилась «воздушная звезда». Вполне нормальный двигатель, без закидонов и проблем. Но к концу Первой мировой инженеры вполне смогли уже адаптировать автомобильный двигатель водяного охлаждения, так что соревнование началось уже тогда.

И на протяжении всего существования конкурировали друг с другом V-образные двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения.

Каждый из этих типов двигателей имеет свои достоинства и недостатки. Для того чтобы сравнить, возьмем несколько моторов из обеих категорий. Скажем так, лучшие из лучших.

За «воздушников» сыграют АШ-82 и Pratt & Whitney R-2800 Double Wasp, за «водяных» — «Роллс-Ройс» «Мерлин Х», «Даймлер-Бенц» DB 605, Климов ВК-105.

В таблице есть одна несправедливость. Знатоки сразу поймут, о чем речь: конечно, это вес. У «водяных» в ТТХ всегда дается так называемый «сухой» вес, то есть без воды/антифриза. Соответственно, они будут за кадром, то есть на ВПП, тяжелее. Где-то на 10-12%, а это немало.

А теперь пойдем сравнивать.

Конструкция

Конструктивно, конечно, проще воздушные. Не нужна рубашка охлаждения, не нужен радиатор, не нужна броня, защищающая радиатор, трубопроводы, жалюзи радиатора.

Воздушный двигатель проще, а значит, дешевле в производстве и обслуживании. И надежнее в бою. Известно, что двигатели воздушного охлаждения выдерживали несколько попаданий и продолжали работать, лишившись двух и даже трех цилиндров. А вот водяной двигатель запросто выходил из строя в случае одного попадания в радиатор.

1:0 в пользу воздушных двигателей.

Охлаждение

Эффективнее, в общем, воздушные. Главной проблемой двойных звезд был отвод тепла от второго ряда цилиндров. Если конструкторы с этим справлялись, все было просто прекрасно.

В полете самолет спокойно предоставлял необходимый объем воздуха для охлаждения головок цилиндров. А у водяного двигателя существовало ограничение в виде температуры жидкости, которую ограничивала точка кипения воды/антифриза. Температура головок цилиндров воздушного двигателя в любом случае выше, чем температура охлаждающей жидкости, так что при одном объеме воздуха, проходящем через головки цилиндров воздушного и радиатор водяного двигателей, эффективнее был воздушный, поскольку площадь радиатора явно уступала площади звезды. И на отвод одной единицы тепла требовался больший объем воздуха, чем от головок цилиндров.

Тем более тогда, когда со временем радиаторы упрятали в тоннели.

2:0 в пользу воздушных.

Аэродинамика

Да, здесь однозначно водяные двигатели имели преимущество. Более тонкий и острый нос, более узкий фюзеляж – самолеты с водяными двигателями были заметно быстрее своих конкурентов с воздушными двигателями.

Толстый лоб самолета с воздушным двигателем – это серьезный удар по аэродинамике самолета. А в начале пути и вообще кольцо Тауненда считалось верхом аэродинамических изобретений.

И в начале 40-х получилось некое такое разделение: самолеты с водяными двигателями были более скоростными, самолеты с воздушными – более маневренными.

Тут стоит отметить, что более легкие И-16, А6М, «Рок» действительно были весьма маневренными машинами. Но уступавшими в скорости своим водяным конкурентам.

Тут лучший пример — наш И-16.

Фактически с «Циклоном» от фирмы «Райт» И-16 запросто лупил в Испании Bf-109B. Однако, как только у немцев появился DB-600, давший «Эмилю» преимущество в скорости и вертикали, роли поменялись тут же, и вчерашний охотник стал дичью.

Реально дело было не только в более мощном поколении моторов, дело было и в аэродинамике. Самолеты стали более тонкими и гладкими, радиаторы стали утапливать в крылья и фюзеляжи, а применение антифризов позволило улучшить теплоотдачу и уменьшить размер и – немаловажно – вес радиаторов и охлаждающей жидкости, которую надо было заливать в систему.

Так что 2:1 в пользу воздушных.

Вооружение

А тут нюансов очень много.

Водяной двигатель был просто создан для настоящих авиаснайперов, поскольку позволял использовать такую замечательную вещь, как мотор-пушку. Наводилась пушка точно по носу самолета, никаких проблем. Плюс вокруг блока цилиндров можно было разместить пару пулеметов.

Все это давало очень неплохой секундный залп с минимальным рассеиванием. Очень важный момент.

Здесь сразу нужно давать балл водяным. 2:2.

Однако кто сказал, что у истребителей с воздушным охлаждением все обстояло печально? Совершенно нет!

Начнем с того, что были два уникальных истребителя, Ла-5 и Ла-7, которым мотор АШ-82 позволил разместить две и три синхронных пушки ШВАК. Да, боекомплект был вполне приличный, около 120 снарядов на пушку, этого выше крыши хватало, чтобы провести бой и разнести любой бомбардировщик противника.

Но истребители Лавочкина – это очень интересное исключение из правил.

А вот все остальные, немцы, японцы, американцы, предпочли воспользоваться тем, что в крыле и около него не стоят громоздкие радиаторы охлаждения, и разместили в крыльях целые батареи.

Плюсов, кстати, тоже достаточно. Проще обслуживать… нет, не оружие. Как раз двигатель, вокруг которого не натыкано пушек, пулеметов и патронов/снарядов. В крыле места больше, соответственно, можно разметить больший боезапас и большее количество стволов.

«Фокке-Вульф» 190А-2, обладатель одно из самых впечатляющих секундных залпов, нес в крыльях четыре 20-мм пушки. Правда, был «секрет». Корневые (расположенные ближе к фюзеляжу) пушки имели боезапас 200 снарядов, а дальние – всего 55. Но все равно внушительно. Плюс два синхронных пулемета.

Японцы на Ki-84 «Хаяте» обошлись меньшим боекомплектом для крыльевых пушек, всего 150 снарядов и 350 патронов для синхронных пулеметов.

Но наиболее весомых успехов в плане размещения оружия добились, на мой взгляд, американцы. Р-47 с восемью 12,7-мм «Браунингами» и F4U «Корсар» с шестью – это весьма. Плюс боекомплект из 400-440 патронов на ствол. У крайних от фюзеляжа крыла б/к мог быть уменьшен до 280 патронов, но это реально несущественно.

Можно долго говорить на тему, что лучше, две пушки или шесть крупнокалиберных пулеметов, но это тема отдельного исследования. Есть и плюсы, и минусы. В любом случае, 3 000 патронов против 300-400 снарядов – есть о чем говорить.

Так что в количественном плане размещения вооружения истребители с воздушными двигателями оказались ничуть не хуже коллег. Более того, так как воздушные двигатели были мощнее водяных, то, соответственно, позволяли брать на борт больше всего. Логично.

А если взять в качестве сравнения Як-9 с одной 20-мм пушкой и одним 12,7-мм пулеметом против американского истребителя с батареей из восьми 12,7-мм «Браунингов», то очень сложно сказать, кто станет победителем. Асу-снайперу, конечно, потребуется всего десяток-другой снарядов, а вот если речь пойдет о летчиках среднего плана… Там пулеметы будут поинтереснее, потому что хоть что-то да попадет.

Читать еще:  Что такое помпаж авиационного двигателя

Балл воздушным. 3:2.

Защита

Здесь все совершенно по-разному. Водяной двигатель надо было защищать. Защищать сам двигатель от прострела, защищать радиатор, защищать всю арматуру. Ибо одно-два попадания в рубашку двигателя или радиатор – и все, прилетели. Да, какое-то время до того момента, как двигатель заклинит от перегрева, имеется. И можно попробовать дотянуть до удобного места либо на свою территорию, либо – парашют. Не очень надежно, не очень удобно.

Воздушной звездой можно было просто защищаться, как бронеплитой. Прострелов эти двигатели, конечно, боялись, но отмечались случаи, когда «Фокке-Вульфы» без пары цилиндров дымили, но летели. А наши «Ла» вполне нормально доползали до аэродромов с тремя выбитыми цилиндрами. В истории зафиксировано множество таких случаев.

Потому и «Ла», и «Тандерболт», и «Фокке-Вульф» очень неплохо зарекомендовали себя именно как штурмовики. Воздушным двигателем можно было прикрыться от малокалиберных зениток и разносить все на своем пути. И бомбы более мощные двигатели запросто позволяли взять на борт. Ла-5 – 200 кг, «Фокке-Вульф» 190 серии F – до 700 кг, а «Тандерболт» серии Д – до 1135 кг.

Сейчас некоторые скажут, что лучший штурмовик Второй мировой войны летал на водяном моторе, и будут правы.

Однако Ил-2 – это штурмовик, который был рожден штурмовиком. А выше шла речь о истребителях, которые стали штурмовиками. Разница есть, и в первую очередь именно в плане защиты.

А в плане защиты однозначно впереди двигатели воздушного охлаждения. 4:2.

Вот такая картина получается. Виной тому, конечно, появившиеся в начале 1940-х двухрядные звёзды. И они затмили водяные двигатели, которые сделали большой шаг вперед с самого начала своего появления.

Главным шагом в развитии двигателей воздушного охлаждения стал момент, когда конструкторы справились с проблемой охлаждения второго ряда цилиндров. Для этого было сделано много: раздвигали ряды цилиндров, чтобы дать воздуху возможность лучше обтекать головки цилиндров, увеличивали площадь маслорадиаторов, так как большая часть тепла отводилась именно через масло, увеличивали оребрение цилиндров.

Именно решение проблемы охлаждения вывело звезды вперед в плане мощности и массы. Это было просто: двойная звезда имела больший литраж по сравнению с водяным двигателем. Отсюда и большая мощность.

Если сравнить удельную мощность наших моторов на уровне 1943 года, то АШ-82Ф имел показатель 1,95 л.с./кг, а ВК-105П – 2,21 л.с./кг массы двигателя. Вроде бы ВК-105П был лучше. И любой самолет с ним должен был иметь преимущество.

Однако если мы возьмем самолет, который летал и на ВК-105, и на АШ-82 и сравним, то без удивления увидим, что ЛаГГ-3 с ВК-105П в плане ЛТХ проигрывал Ла-5 с АШ-82 по всем параметрам. И это несмотря на то, что Ла-5, скажем так, не блистал аэродинамически.

Мощность двойной звезды АШ-82 решила все проблемы аэродинамики, просто вытащив самолет за счет «лишних» 500 л.с.

Конечно, конструкторы водяных двигателей не собирались сдаваться и попробовали догнать воздушников. Были попытки спарить двигатели, чтобы два двигателя работали через редуктор на один винт. В реальности не получилось ни у кого.

Более умным был проект Н- и Х-образных двигателей, когда несколько блоков цилиндров работали бы на один коленвал. Такой двигатель получился у британцев, Нэпир «Сейбр», 24-цилиндровый монстр. «Тайфун», конечно, с ним полетал, но как только британцы довели до ума свой воздушный Бристоль «Центавр», то и про «Сейбр» благополучно забыли.

В самом конце Второй мировой войны появились водяные двигатели нового поколения, с увеличенным литражом в основном за счет увеличения диаметра поршня и утончения стенок блоков. Это с одной стороны, сказалось на ресурсе, с другой – дало необходимую мощность. АМ-42, «Гриффон», DB-603, Юмо-213 – все они были хороши в этом плане, но опоздали на войну.

Для того чтобы поставить последнюю точку в соревновании поршневых двигателей, стоит посмотреть на окончание их карьеры.

Когда появились турбореактивные двигатели, поршневым пришлось уйти на заслуженный покой.

Уделом двигателей внутреннего сгорания стала лёгкая и спортивная авиация, где были свои требования к двигателям.

Воздушные двигатели оккупировали спортивную авиацию, а вот водяным просто пришлось уйти совсем. Правда, в последние годы намечается тенденция по возвращению в авиацию дизелей, но в любом случае это не столько авиационные, сколько автомобильные двигатели.

Так что, подытоживая все сказанное, я бы взял на себя ответственность по утверждению того, что авиационные двигатели внутреннего сгорания с воздушным охлаждением были более эффективны, чем их коллеги с жидкостным охлаждением сразу по нескольким параметрам.

То, что чудо-двигатель АШ-82 работает до сих пор как в самолетах, так и в вертолетах, только подтверждает это утверждение.

Система охлаждения процессора: жидкостное охлаждение или воздушное охлаждение

Основные моменты:

Что подойдет именно вам.

Здесь вы найдете то, что вам следует знать, чтобы сделать правильный выбор между жидкостным охлаждением и воздушным охлаждением, в том числе информацию о работе этих двух методов, и определить, какой метод подойдет именно вам.

Здесь вы найдете то, что вам следует знать, чтобы сделать правильный выбор между жидкостным охлаждением и воздушным охлаждением, в том числе информацию о работе этих двух методов, и определить, какой метод подойдет именно вам.

Как и любой другой мощный компонент аппаратного обеспечения ПК, процессор выделяет тепло во время работы и должен надлежащим образом охлаждаться для достижения максимальной производительности.

Марк Галлина (Mark Gallina), архитектор систем охлаждения и механических систем корпорации Intel, объясняет: «При нормальной работе транзисторы внутри процессора преобразуют электрическую энергию в тепловую (тепло). Это тепло повышает температуру процессора. Если для этого тепла не существует эффективного пути, температура процессора превысит безопасную рабочую температуру».

Но как лучше всего поддерживать оптимальную рабочую температуру процессора? Существует множество способов охлаждения процессора, но в большинстве настольных ПК и ноутбуков используется воздушное или жидкостное охлаждение.

Мы поговорим о жидкостном и воздушном охлаждении: принципе их работы, плюсах и минусах каждого из них и о том, что больше всего подходит для вашей сборки.

Как работает система охлаждения процессора

Системы воздушного и жидкостного охлаждения процессора работают по аналогичному принципу и по существу выполняют одну задачу: поглощают тепло от процессора и распределяют его в сторону от аппаратного обеспечения.

Тепло, выделяемое самим процессором, распределяется на металлическую крышку процессора, называемую встроенным теплораспределителем. Затем тепло передается на опорную пластину системы охлаждения процессора. Затем тепло распределяется с помощью жидкости или через тепловую трубку на вентилятор, где оно выдувается из системы охлаждения и в конечном итоге из ПК.

Несмотря на то, что механизмы, лежащие в основе, похожи, эти два метода обеспечивают распределение тепла совершенно разными способами.

Читать еще:  Что ставят вместо двигателя

Начнем с воздушной системы охлаждения.

Охлаждение воздухом

В системе воздушного охлаждения тепло передается от встроенного теплораспределителя процессора через нанесенную термопасту на проводящую опорную пластину, которая обычно изготавливается из меди или алюминия. От опорной пластины тепловая энергия поступает в прикрепленные тепловые трубки.

Тепловые трубки предназначены для отвода тепла из одного места в другое. В этом случае тепло перемещается к теплоотводу, который приподнят над системной платой, чтобы освободить место для других компонентов, например ОЗУ. Данные трубки передают энергию в виде тепла на тонкие металлические ребра, образующие теплоотвод. Эти ребра предназначены для обеспечения максимального воздействия холодного воздуха, который затем поглощает тепло из металла. Установленный вентилятор отводит теплый воздух от теплоотвода.

Система пассивного охлаждения является менее распространенной, но схожей в теории со стандартной системой охлаждения. В ней используется теплоотвод, специально разработанный для поглощения и перераспределения тепла без использования вентилятора. Это может пригодиться в сборке, где приоритетом является низкий уровень шума, однако в большинстве игровых компьютеров используется система воздушного или жидкостного охлаждения.

Эффективность системы воздушного охлаждения может варьироваться в зависимости от таких факторов, как материалы, используемые в конструкции (медь является более проводящей, чем алюминий, хотя алюминий дешевле), а также размера и количества вентиляторов, подключенных к теплоотводу процессора. Этим объясняется разница в размере и конструкции систем воздушного охлаждения процессора.

Более крупные системы воздушного охлаждения обычно рассеивают тепло лучше, но для громоздкой системы охлаждения не всегда есть место, особенно в ПК малого форм-фактора.

Далее мы более подробно рассмотрим преимущества воздушного охлаждения, но сначала изучим жидкостное охлаждение для сравнения.

Охлаждение жидкостью

Как и в случае с системами воздушного охлаждения, существует широкий выбор доступных вариантов, при этом большинство из них подразделяются на две категории: системы охлаждения «все в одном» или настраиваемые контуры охлаждения. Мы сосредоточимся главным образом на системах охлаждения «все в одном», хотя фундаментальные принципы того, как жидкость охлаждает процессор, одинаковы в обеих системах.

Как и в случае с воздушным охлаждением, процесс начинается с опорной пластины, подключенной к встроенному теплораспределителю процессора со слоем термопасты. Таким образом обеспечивается лучшая теплопередача между двумя поверхностями. Металлическая поверхность опорной пластины является частью блока водяного охлаждения, который предназначен для заполнения охлаждающей жидкостью.

Охлаждающая жидкость поглощает тепло из опорной пластины, проходя через блок водяного охлаждения. Затем оно продолжает перемещаться по системе и вверх по одной из двух трубок к радиатору. Радиатор обеспечивает воздействие воздуха на жидкость, что помогает ей остыть, а вентиляторы, прикрепленные к радиатору, отводят тепло от системы охлаждения. Затем охлаждающая жидкость снова поступает в блок водяного охлаждения, и цикл повторяется.

Что подойдет именно вам?

Оба варианта охлаждения являются высокоэффективными при правильной реализации, но имеют разные характеристики в разных условиях. При выборе необходимо учитывать ряд факторов.

Цена может существенно отличаться в зависимости от функций, которым вы отдаете предпочтение. Тем не менее в целом системы воздушного охлаждения обходятся дешевле благодаря более простой работе.

Для обеих систем существуют версии начального и премиум-класса. Модель системы воздушного охлаждения премиум-класса может быть оснащена более крупным теплоотводом, вентиляторами более высокого уровня и иметь различные варианты дизайна. Система жидкостного охлаждения «все в одном» высшего класса может быть оснащена более крупным радиатором и сочетать в себе эстетические и функциональные возможности индивидуальной настройки, такие как программное обеспечение для управления скоростью вращения вентиляторов и подсветкой.

Системы воздушного и жидкостного охлаждения процессора имеют больший диапазон цен в зависимости от необходимых характеристик.

Простота установки

Несмотря на то, что система жидкостного охлаждения «все в одном» зачастую сложнее в установке, чем стандартная система воздушного охлаждения, принцип ее работы достаточно прост. Большинство таких систем состоят только из блока водяного охлаждения, двух шлангов, обеспечивающих циркуляцию охлаждающей жидкости, и радиатора. Дополнительные действия включают установку блока водяного охлаждения, который аналогичен установке системы воздушного охлаждения, а затем установку радиатора и вентиляторов таким образом, чтобы излишки тепла могли легко выйти из ПК. Поскольку охлаждающая жидкость, насос и радиатор являются автономными компонентами устройства (отсюда название «все в одном»), после его установки не требуется значительный контроль или техническое обслуживание.

С другой стороны, установка настраиваемого контура требует дополнительных усилий и знаний со стороны сборщика. Процесс первоначальной установки может занять больше времени, однако дополнительная гибкость позволяет значительно расширить возможности настройки и при необходимости включить в контур другие компоненты, такие как графический процессор. При правильном внедрении эти более сложные настраиваемые контуры также могут поддерживать сборки всех форм и размеров.

Размер

Системы воздушного охлаждения могут быть громоздкими, но их габариты сосредоточены в одной области, а не распределены по всей системе. С другой стороны, при использовании системы «все в одном» вам потребуется пространство для установки радиатора. Кроме того, необходимо учесть такие аспекты, как правильное расположение и взаимодействие блока водяного охлаждения и трубок подачи охлаждающей жидкости.

Таким образом, если вы работаете с небольшой сборкой, громоздкая система воздушного охлаждения может оказаться не лучшим вариантом. В этом случае больше подойдет низкопрофильная система воздушного охлаждения или система «все в одном» с небольшим радиатором. При планировании модернизации или выборе корпуса убедитесь в наличии достаточного пространства для выбранного решения по охлаждению и в том, что корпус поддерживает выбранное вами аппаратное обеспечение.

Жидкостное охлаждение, особенно при использовании системы «все в одном», работает тише, чем вентилятор на теплоотводе процессора. Это также может варьироваться в зависимости от наличия системы воздушного охлаждения с вентиляторами, специально разработанными для снижения уровня шума, а настройки или выбор вентилятора могут влиять на уровень шума. В целом жидкостное охлаждение обычно создает меньше шума, так как небольшой насос, как правило, хорошо изолирован, а вентиляторы радиатора работают с меньшей скоростью (оборотов в минуту), чем на теплоотводе процессора.

Регулировка температуры

Если вы планируете выполнять оверклокинг или ресурсоемкие задачи, такие как рендеринг видео или потоковая трансляция, лучше всего выбрать жидкостное охлаждение.

По словам Марка Галлины, жидкостное охлаждение «более эффективно распределяет тепло по большей площади конвекционной поверхности (радиатора), чем чистая проводимость, что позволяет снизить скорость вращения вентилятора (для лучшей акустики) или увеличить общую мощность».

Другими словами, оно эффективнее и во многих случаях тише. Если вы хотите добиться минимальной температуры или получить более тихое решение и вас не пугает более сложный процесс установки, лучше всего вам подойдет жидкостное охлаждение.

Системы воздушного охлаждения достаточно хорошо перемещают тепло от процессора, но помните, что тепло затем рассеивается в корпусе. Это может привести к повышению общей температуры внутри системы. Системы жидкостного охлаждения лучше справляются с перемещением тепла за пределы системы через вентиляторы радиатора.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]